人工智能算法的可解释性方法研究

来源:数学与人工智能

摘要

     以深度学习为代表的人工智能技术在信息领域的应用,极大地提高了信息的利用效率和挖掘价值,深刻的影响了各领域的业务形态,同时也引发了监管部门和用户对这一新技术运用中出现的 “算法黑箱”问题关切和疑虑。如何对相关算法、模型、及其给出的结果进行合理的解释成为数据科学家亟需解决的问题。

一、为什么智能算法需要可解释

1.来自人工智能的挑战

      自AlphaGo战胜人类顶尖围棋手之后,人工智能这一概念真正成为了社会各界关注的焦点,也为各国政府所重视。一方面可以给我们带来诸多便利,比如可能为我们提供医疗、法律、金融等方面的建议或决策,也可能直接操控汽车、无人机,甚至大规模杀伤性武器[1]。但另一方面,它也被用来“做坏事”甚至危害人类。如某些网站利用人工智能算法进行“大数据杀熟”,2017年也发生了全国首例利用人工智能技术进行网络诈骗的案件。2015年德国大众公司甚至发生了机器人“杀人事件”[2]。欧盟已经要求所有算法解释其输出原理[3],这意味着不可解释的算法模型将成为非法使用[3,4]。

2.可解释是人工智能发展的必然选择

      在时下热议的人工智能相关伦理、算法歧视、算法正确性、安全性等问题中,有一个问题被时常提起,即以深度学习算法为代表的人工智能算法的可解释性问题。人类理性的发展历程使我们相信,如果一个判断或决策是可以被解释的,我们将更容易了解其优点与不足,更容易评估其风险,知道其在多大程度上、在怎样的场合中可以被信赖,以及我们可以从哪些方面对其进行不断改善,以尽量增进共识、减少风险,推动相应领域的不断发展。这样的思维范式或许是诞生在人工智能时代之前的稍显过时的思维模式。或许随着科技和社会的发展,未来会演化出新的思维范式,但目前这仍然是我们最成熟、最具共识、最可信赖的思维模式 [1]。

二、可解释性方法概述

      17年ICML会议上来自谷歌的科学家给出一个关于可解释性的定义是“Interpretation is the process of giving explanations to Human”[5]。许多模型及应用不可解释性的原因主要来源于对问题和任务了解得还不够充分。那么只要在使用模型的过程中,只要是能够提供给我们关于数据或模型的可以理解的信息,有助于我们更充分的发现知识、理解和解决问题的方法,那么都可以归类为可解释性方法。同时,这篇文章将可解释性方法按进行的过程划分为如下三类:在建模之前的可解释性方法、建立本身具备可解释性的模型和建模后使用可解释性方法对模型作出解释,下面对这三大类方法分别作介绍。

三、建模前:在建模之前的可解释性方法

       在建模之前的可解释性方法主要涉及一些数据预处理或数据展示的方法机器学习解决的是从数据中发现知识和规律的问题,如果我们对想要处理的数据特征所知甚少,指望对所要解决的问题本身有很好的理解是不现实的,在建模之前的可解释性方法的关键在于帮助我们迅速而全面地了解数据分布的特征,从而帮助我们考虑在建模过程中可能面临的问题并选择一种最合理的模型来逼近问题所能达到的最优解。

      数据可视化就是一类非常重要的建模前可解释性方法。很多对数据挖掘稍微有些了解的人可能会认为数据可视化是数据挖掘工作的最后一步,大概就是通过设计一些好看又唬人的图表或来展示你的分析挖掘成果。但实际上真正要研究一个数据问题之前,通过建立一系列方方面面的可视化方法来建立我们对数据的直观理解是非常必须的,特别是当数据量非常大或者数据维度非常高的时候,比如一些时空高维数据,如果可以建立一些一些交互式的可视化方法将会极大地帮助我们从各个层次角度理解数据的分布。


四、建模中:建立本身具备可解释性的模型

       建立本身具备可解释性的模型是最关键的一类可解释性方法,同样也是一类要求和限定很高的方法,具备可解释性的模型大概可以分为以下几种模型[6]。

      基于规则的模型,比如我们提到的非常经典的决策树模型。这类模型中任何的一个决策都可以对应到一个逻辑规则表示。但当规则表示过多或者原始的特征本身就不是特别好解释的时候,基于规则的方法有时候也不太适用。

      基于单个特征的方法主要是一些非常经典的回归模型,比如线性回归、逻辑回归、广义线性回归、广义加性模型等。这类模型除了结构比较简单之外,更重要的是回归模型及其一些变种拥有非常坚实的统计学基础,上百年来无数统计学家探讨了在各种不同情况下的模型参数估计与修正、假设检验、边界条件等等问题,使得他们在各种不同情况下都能使具有有非常好的可解释性。

     基于实例的方法主要是通过一些代表性的样本来解释聚类/分类结果的方法。比如可以为每一个聚类簇中选出代表性样例和重要的子空间。

     基于稀疏性的方法主要是利用信息的稀疏性特质,将模型尽可能地简化表示。比如LDA方法,根据层次性的单词信息形成了层次性的主题表达,这样一些小的主题就可以被更泛化的主题所概括,从而可以使我们更容易理解特定主题所代表的含义。

     基于单调性的方法在很多机器学习问题中,有一些输入和输出之间存在正相关/负相关关系,如果在模型训练中我们可以找出这种单调性的关系就可以让模型具有更高的可解释性。比如医生对患特定疾病的概率的估计主要由一些跟该疾病相关联的高风险因素决定,找出单调性关系就可以帮助我们识别这些高风险因素。

五、建模后:使用可解释性方法对模型作出解释

      建模后的可解释性方法主要是针对具有黑箱性质的深度学习模型而言的, 深度学习的黑箱性主要来源于其高度非线性性质,每个神经元都是由上一层的线性组合再加上一个非线性函数的得到,人们无法像理解线性回归的参数那样通过统计学基础假设来理解神经网络中的参数含义及其重要程度、波动范围。但实际上我们是知道这些参数的具体值以及整个训练过程的,所以神经网络模型本身其实并不是一个黑箱,其黑箱性在于我们没办法用人类可以理解的方式理解模型的具体含义和行为,而神经网络的一个非常好的性质在于神经元的分层组合形式,这让我们可以用物质组成的视角来理解神经网络的运作方式。主要分为以下几类的工作:隐层分析方法、模拟/代理模型、敏感性分析方法[7,8,9]。

隐层分析方法:该方法通过对隐层运用一些可视化方法来将其转化成人类可以理解的有实际含义的图像以展示神经网络中每层都学到的概念。我们都知道典型的CNN模型的一个完整卷积过程是由卷积-激活-池化(pooling)三个步骤组成的,也可以通过反池化-反激活-反卷积这样的一个逆过程,并借助特征可视化帮助我们理解CNN的每一层究竟学到了什么东西[7]。此外,文献[]提出了一种网络切割的方法以提取CNN的语义概念[8]。

模拟/代理模型:该类方法是针对黑箱模型,使用蒸馏(Model distillation)技术得到新的可解释模型,训练这两个模型使他们的结果近似。但这类算法也存在很大的局限性,比如模型本身并不能被“蒸馏”,或者原始模型与蒸馏后的模型差异很大导致可解释性模型的意义不再存在。

敏感性分析方法:用于定量描述模型输入变量对输出变量的重要性程度的方法。是令每个属性在可能的范围变动,研究和预测这些属性的变化对模型输出值的影响程度。我们将影响程度的大小称为该属性的敏感性系数,敏感性系数越大,就说明属性对模型输出的影响越大。一般来讲对于神经网络的敏感性分析方法可以分为变量敏感性分析、样本敏感性分析两种,变量敏感性分析用来检验输入属性变量对模型的影响程度,样本敏感性分析用来研究具体样本对模型的重要程度,也是敏感性分析研究的一个新方向。在金融领域,将敏感性分析与局部特征探索方法(主要是树类模型),能够有效解决金融领域普遍存在先验知识不足问题[12]。

六、结束语

     《火的礼物:人类与计算技术的终极博弈》一书中提到“火使我们的生活更加舒适、健康和愉快。而它同时也拥有巨大的破坏力,有可能因为意外,也可能是故意纵火”,对于深度学习亦是如此。期待通过算法研究者、政府、法律等多方面的共同努力,我们可以更好地掌握人工智能算法,来帮助我们解决各种难题,建设更加美好的社会。


参考文献

[1] 打破人工智能算法黑箱.张吉豫.https://36kr.com/p/5123323

[2] 预言成真!人工智能已参与犯罪危害人类社会!如何加紧遏制新民晚报https://baijiahao.baidu.com/s?id=1627686939432654294&wfr=spider&for=pc

[3] 人工智能的算法黑箱与数据正义 https://blog.csdn.net/UFv59to8/article/details/79947730

[4] 算法黑箱,是潘多拉的盒子?算法与信息(之二). http://www.sohu.com/a/323823906_550962

[5] Interpretable Machine Learning: The fuss, the concrete and the questions. Been Kim. Google Brain. ICML 2017 Tutorial.

[6] Interpretable Machine Learning. https://christophm.github.io/interpretable-ml-book/index.html

[7]深度学习的可解释性研究(一) 让模型具备说人话的能力. https://zhuanlan.zhihu.com/p/37223341.

[8] 深度学习的可解释性研究(二)不如打开箱子看一看. https://zhuanlan.zhihu.com/p/38151985

[9] 深度学习的可解释性研究(三)是谁在撩动琴弦. https://zhuanlan.zhihu.com/p/38568075

[10]Zeiler M D, Fergus R . Visualizing and Understanding Convolutional Networks[M]// Computer Vision ECCV 2014. Springer.

[11] David Bau, Bolei Zhou, Aditya Khosla, et al. Network Disp: Quantifying Interpretability of Deep Visual Representations[J]. 2017:3319-3327.

[12] 深度学习的技术在金融行业中的应用. https://blog.csdn.net/sinat_22510827/article/details/9029431

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/487668.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

asp:dropdownlist如何去掉三角箭头_一棵悬崖三角枫的培养过程

更多精彩,请点击上方思齐盆景关注!▲2010年4月上图是2010年春天购买的三角枫素材。这棵三角枫过渡流畅,曲度自然。入手后开始培养枝条。▲2012年3月转眼间两年过去了,枝条的培养略见成效。翻盆时打算按照上图的角度种植&#xff0…

云联惠身份认证需要多长时间_欧盟REACH认证需要多长时间【周期、费用、有效期】...

一、欧盟reach认证REACH是欧盟关于化学品注册,评估,授权和限制的法规,它于2007年6月1日生效,并用一个系统取代了许多欧洲指令和法规。二、申请REACH认证需要多长时间一般情况下,申请REACH认证需要5个工作日&#xff0c…

Nature Neuroscience|群际冲突的脑间同步机制

本文来源:”认知神经科学与学习国家重点实验室”官网编辑:Yezi审阅:mingzlee7马燚娜课题组在《Nature Neuroscience》发表论文揭示群际冲突的脑间同步机制图片来源:《乌合之众——大众心理研究》插图个人一旦成为群体的一员&#…

scala语言的底层是java实现的_2020了,每个程序员都该学习的 5 种开发语言

我曾在某处读到过(可能在《代码大全》,但我不敢确定),程序员应该每年学习一门新的编程语言。但如果做不到,我建议,你至少学习以下 5 种开发语言,以便你在职业生涯有很好的表现。每个公司都喜爱精…

热议:大脑功能磁共振数据不可靠?杜克大学教授对自己15年的工作提出质疑...

来源:brainnews作者:brainnew创作团队杜克大学的研究人员对功能磁共振数据进行了重新测评,对自己15年的工作提出了质疑。脑部图像显示了不同的两天完成3个任务所对应的功能磁共振成像。图中,暖色显示一组人激活级别的一致性&#…

cvc降噪和主动降噪_1MORE 主动降噪圈铁耳机图集

1MORE在今年推出了一款主动降噪耳机,这款耳机定价虽然稍高达到1299元,不过它还是相比其他主流价位的主动降噪耳机有很多的不同点。1MORE主动降噪耳机使用的似乎是高通蓝牙SoC的方案,使用了动铁动圈的扬声器组合。支持前馈反馈的双Mic主动降噪…

北约科技组织展望未来20年军事新兴与颠覆性技术趋势

来源:创新研究2020年5月4日,北约科技组织(NATO Science & Technology Organization)发布《科技趋势:2020-2040》(Science & Technology Trends 2020-2040),分析评估未来20年…

feign 整合sentinel_SpringCloud实战五-Sentinel上

场景微服务会划分出多个模块,模块之间的调用频率可能比较高,这时可能会存在服务雪崩(一个服务失败,导致整条链路的服务都失败的情形)的,如图:随着时间的推移,从刚开始的C不可用变成了…

计算机院校人气排名,2019高校人气排行榜_最具人气大学排行榜7月榜单发布 清华大学排第一...

最具人气大学排行榜7月榜单发布 清华大学排第一JPG,395x289,231KB,342_249大学人气排行榜 你的大学上榜了吗JPG,392x290,231KB,337_250大学人气排行榜 你的大学上榜了吗JPG,596x447,…

170905-MyBatis中的关系映射

关系映射 参考文档复习:1对1,1对多,多对多 1.映射(多)对一、(一)对一的关联关系 1).使用列的别名 ①.若不关联数据表,则可以得到关联对象的id属性 ②.若还希望得到关联对象的其它属性。则必须关联其它的数据表 …

【AI-CPS】【工业互联网】从观望到行动:全球工业物联网市场生态全景观察

以下文章来源于资本实验室 ,作者齐达在当前,诸如5G,物联网、边缘计算、人工智能、机器人、区块链、增材制造和虚拟现实/增强现实等技术正在加速融合到工业物联网(Industrial Internet of Things,IIoT)的肥沃…

光华科技光刻胶_光刻胶领衔国产替代,20只相关优质个股曝光,快看看有没有你的...

光刻胶(3.78%)领涨股:扬帆新材(300637),上涨家数:20,下跌家数:4,涨停家数:320只光刻胶概念优质股20只光刻胶优质股,按涨跌幅大小排序,分别为&…

考虑玩家移动速度的射击

E4自带第一人称射击模板中的射击在玩家移速较慢的情况下没有明显问题,但如果玩家在高速移动时候(例如骑摩托车或者开车),就会发现子弹的速度很奇怪,没有考虑到玩家本身的移动速度,因此本身也是不符合物理规…

荐读:五月最值得阅读的15篇人工智能文章

本文经授权转载自学术头条( ID: SciTouTiao),转载请联系出处来源:学术头条作者:吴婷婷在过去一个月中,15篇最值得阅读的AI文章(附链接):1、沃森的创造者想教人工智能一个…

计算机网络IP分配大题,2018年IP分片网络大题

【知识回顾】(1)分片的数据长度必须是8B的整数倍(2)路由器端口号也需要占用该子网中的一个IP地址。【真题】第一问:IP地址【解析】因为192.168.1.0/24这个IP均分给两个部门,所以可以销售部的网络号为0,技术部的子网号为128.即技术部子网地址为…

lte核心网由哪些设备组成_投影地面互动的实现由哪些设备组成?「振邦视界」...

地面互动投影技术是比较受大众欢迎的多媒体展示技术,新奇的互动体验让人们流连忘返,地面互动投影目前也被运用到各个行业领域中,对品牌的宣传有着很大的作用,是一种新型的利益化手段。那么地面互动投影的实现是由哪些设备组成的呢…

张首晟谈牛顿的《自然哲学的数学原理》

出版于1729年的第一英文版牛顿名著《自然哲学的数学原理》本文转载自丹华资本(DanhuaCapital )2016-01-28公众号张首晟文章。了解我的朋友都知道我最不欢喜礼品,总觉得物质生活越简单越好。所以每逢圣诞佳节,天伦之乐,…

前端填空题_一年前端面试总结|入职字节|2020.8

站在未来看现在你当像鸟飞向你的山前言普通本科,软件工程专业,2019年毕业进入奇安信集团(前360企业安全),实习期间遇到一群可以一起嗨的朋友,感觉很幸福,也很庆幸能够遇到hin nice的导师&#x…

分数怎么在计算机上关,电脑如何在注册表上关闭AutoRun功能

AutoRun是微软的windows系统的一种自动运行的文件命令,主要用于对于移动设施的自动运行。一些用户反馈说电脑运行AutoRun功能,导致系统很卡,有什么方法可以关闭AutoRun功能?其实关闭AutoRun功能方法简单,我们可以通过注…

【一图看全】北京新基建行动方案中的30大要点

转自:行业研究报告6月10日,北京市印发《北京市加快新型基础设施建设行动方案(2020-2022年)》(以下简称“行动方案”),其中提出聚焦“新网络、新要素、新生态、新平台、新应用、新安全”六大方向…