计算的极限(零):逻辑与图灵机

来源: 数学职业家


提出问题和解决问题的人

2012,图灵诞辰100周年,献给这位伟大的开拓者。

计算无处不在。

走进一个机房,在服务器排成的一道道墙之间,听着风扇的鼓噪,似乎能嗅出0和1在CPU和内存之间不间断的流动。从算筹算盘,到今天的计算机,我们用作计算的工具终于开始量到质的飞跃。计算机能做的事情越来越多,甚至超越了它们的制造者。上个世纪末,深蓝凭借前所未有的搜索和判断棋局的能力,成为第一台战胜人类国际象棋世界冠军的计算机,但它的胜利仍然仰仗于人类大师赋予的丰富国际象棋知识;而仅仅十余年后,Watson却已经能凭借自己的算法,先“理解”问题,然后有的放矢地在海量的数据库中寻找关联的答案。长此以往,工具将必在更多的方面超越它的制造者。而这一切,都来源于越来越精巧的计算。

计算似乎无所不能,宛如新的上帝。但即使是这位“上帝”,也逃不脱逻辑设定的界限。

第一位发现这一点的,便是图灵。

一切从逻辑开始

1900年的巴黎,在世纪交替之际,希尔伯特提出了他著名的23个问题。其中第二个问题——算术系统的相容性——正是他那雄心勃勃的“希尔伯特计划”的最后一步。这位数学界的巨人,打算让整个数学体系矗立在一个坚实的地基上,一劳永逸地解决所有关于对数学可靠性的种种疑问。一切都为了回答三个问题:

数学是完备的吗?也就是说,面对那些正确的数学陈述,我们是否总能找出一个证明?数学真理是否总能被证明?

数学是一致的吗?也就是说,数学是否前后一致,不会得出某个数学陈述又对又不对的结论?数学是否没有内部矛盾?

数学是可判定的吗?也就是说,能够找到一种方法,仅仅通过机械化的计算,就能判定某个数学陈述是对是错?数学证明能否机械化?

希尔伯特明确提出这三个问题时,已是28年后的1928年。在这28年间,数学界在算术系统的相容性上没有多少进展。但希尔伯特没有等太久,仅仅三年后,哥德尔就得到了前两个问题的答案,尽管这个答案不是希尔伯特所希望看到的。

哥德尔的答案分两部分。

第一,任何包含了算术的数学系统都不可能同时拥有完备性和一致性,也就是说,如果一个数学系统包含了算术的话,要么它是自相矛盾的,要么存在一些命题,它们是真的,但我们却无法证明。这说明,希尔伯特的前两个问题不可能同时为真。在这里,“算术”有着精确的含义,就是皮亚诺公理,一组描述了自然数的公理。

第二,任何包含了算术的数学系统,如果它是一致的,那么我们不能在它的内部证明它本身的一致性。这说明,我们没有希望解决第二个问题。

这就是著名的哥德尔不完备性定理,与其说它回答了希尔伯特的前两个问题,不如说它阐述了为什么我们根本不可能解决这两个问题。

哥德尔的证明非常精巧。他先将所有的数学陈述和证明符号化,然后给每个符号串赋予一个数字,这个过程被称为哥德尔配数法。借助数学归纳法,我们可以建立针对所有自然数的陈述,而这样的陈述本身对应着一个数字,这个数字也符合陈述本身的要求。换言之,这个陈述陈述了它本身的性质。哥德尔正是通过这样魔法般的自指,完成了他的证明。这个证明之所以重要,是因为它第一次提供了一套完整的数学工具和方法,用于证明有关数学证明的不可能性。这本身就是数学的一次重大胜利,说明数学的力量强大得可以用纯粹逻辑的方法,证明它本身的力量是有界限的。在数学的领地上,有些东西我们不知道,也不可能知道。

希尔伯特的前两个问题已经解决,只剩下最后一个问题。然而,如果一个数学系统不完备的话,它显然不可能是可判定的,因为机械化的计算本身也可以看成一种证明,而在一个不完备的系统中,真理不总能被证明。所以,最后一个问题只对完备的数学系统有意义。

所幸,完备的数学系统是存在的。同样是哥德尔,他证明了所谓“一阶谓词演算”的逻辑系统是完备的,这被称为哥德尔完备性定理。一阶谓词演算是一个比较弱的逻辑系统,在其中我们甚至不能有效唯一地描述算术。比如说,自然数系统符合皮亚诺公理的一阶版本,但它并不是唯一的,还有无数种所谓“非标准模型”同样符合这套一阶系统。在一阶谓词演算中,对于一套公理系统,如果一个命题在所有的模型中都正确,那么必定可以形式地证明这个命题,这就是一阶谓词演算的完备性。在一阶谓词演算中,真理总能被证明。

在这个弱得多的逻辑系统中,我们有了完备性,真的命题必定可以被证明。那么,它是不是可判定的?我们能不能找到一种机械计算的方法,判定其中数学陈述的对错?数学称述的真假,是否可判定的?这个问题,就是希尔伯特的可判定性问题。

注:希望更深入了解哥德尔不完备性定理的读者,可以重温旧文《希尔伯特之梦,以及梦的破灭》

复杂的简单机器

在纽曼教授的数理逻辑课上,图灵第一次听到希尔伯特的可判定性问题以及哥德尔不完备性定理。那是1935年的春天,他刚刚完成在剑桥国王学院的四年本科学习,以优异的成绩被选为学院研究员,正准备在数学界大显身手,数理逻辑自然而然吸引了他的兴趣。图灵清楚地意识到,解决可判定性问题的关键,在于对“机械计算”的严格定义。考究希尔伯特的原意,这个词大概意味着“依照一定的有限的步骤,无需计算者的灵感就能完成的计算”,这在没有电子计算机的当时,算是相当有想象力又不失准确的定义。

但图灵的想法更为单纯。什么是“机械计算”?机械计算就是一台机器可以完成的计算,这就是图灵的回答。


用机器计算的想法并不新鲜。17世纪的莱布尼兹就曾设想过用机械计算来代替哲学家的思考,而19世纪的Charles Babbage和Ada Lovelace就设计出了功能强大的“分析机”,只可惜Babbage欠缺管理才能,这台超越了时代的机器始终没有完全造好。但图灵需要的机器,跟先驱设想的机器稍有不同。它必须足够简单,简单得显然能造出实物,也可以用一目了然的逻辑公式描述它的行为;它又必须足够复杂,有潜力完成任何机械能完成的计算。图灵要找的,是一种能产生极端复杂行为的简单机器。

这并非易事,但图灵做到了,据说这是他某次长跑过后,在某块草坪上发呆的成果。他设计了一类机器,然后定义“机械计算”为“这类机器可以完成的计算”。他设计的这类机器,正是日后以他名字命名的图灵机。

图灵机的示例。绿点指示处为当前状态,每条规则的4项分别是:当前位置读入的字符、当前位置写入的字符、纸带的移动方向、将要转移到的状态。

图灵机的结构非常简单,它由两部分组成:一个读写头,还有一条两边无限延长的纸带,纸带被划分为小格,每格中只能有0和1两种符号。读写头的限制则稍微宽松一些,虽然每次只能对着纸带上的一个格子,但它本身可以处于不同的状态,虽然状态的数目是有限的。在所有状态中,有一个特殊的“停机”状态,读写头一旦处于停机状态,就会停止运作;但如果读写头一直没有到达停机状态的话,它就会永远运转下去。

整台图灵机的秘密在于读写头的状态转移表,它指示着读写头的状态和当前读写头正对格子的符号如何变化。它只有一种非常简单的规则,就是“如果在状态A的读写头对着符号x,那么对当前格子写入符号y,将纸带左移一格/右移一格/保持不动,然后转移到状态B”。状态转移表就是由一系列这样的简单规则组成的。可以说,状态转移表就相当于图灵机的源代码。

实际上,我们平时笔算乘法的思维过程,跟一台图灵机的运转非常相似:在每个时刻,我们只将注意力集中在一个地方,根据已经读到的信息移动笔尖,在纸上写下符号;而指示我们写什么怎么写的,则是早已背好的九九乘法表,以及简单的加法。如果将一个笔算乘法的人看成一台图灵机,纸带就是用于记录的纸张,读写头就是这个人和他手上的笔,读写头的状态就是大脑的精神状态,而状态转移表则是笔算乘法的规则,包括九九表、列式的方法等等。这种模式似乎也适用于更复杂的机械计算任务。如此看来,图灵机虽然看起来简单,但它足以作为机械计算的定义。

既然图灵机如此简单,能不能将它“升级”,赋予更多的硬件和自由度,使它变得更强大呢?比如说,让它拥有多条纸带和对应的读写头,而纸带上也不再限定两种符号,而是三种四种甚至更多种符号?的确,放宽限制之后,在某种程度上,对于相同的任务我们能设计出更快的图灵机,但从本质上来说,“升级”后的图灵机能完成的任务,原来的图灵机也能完成,虽然也许会慢些。也就是说,这种“升级”在可计算性上并没有意义,放宽限制后的机器能计算的,原来的机器也能完成。既然计算能力没有质的变化,无论采取什么样的结构,用多少种符号,都无所谓。

图灵机的一大优点,就是它的简单。只要给出状态转移表,任何一个人都可以模拟一台图灵机的计算。对工程师而言,在现实中用机械建造一台图灵机也并非什么难事。对于程序员来说,写一个模拟图灵机的简单程序更是不在话下。但如此简单的机器,它又能做什么呢?它真的能充当“机械计算”的定义吗?

以上文章观点仅代表文章作者,仅供参考,以抛砖引玉!

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/485912.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java修改list中对象的值_Java中List集合的一点总结

为什么要用接口引用指向实现类的对象?这种写法其实java多态的表现形式多态的定义:指允许不同类的对象对同一消息做出响应。即同一消息可以根据发送对象的不同而采用多种不同的行为方式。(发送消息就是函数调用List list;是在栈区开辟一个空间…

Science公布年度十大科学突破!新冠疫苗居首位

来源 : 新华社编辑:宗华排版:郭刚美国《科学》杂志17日公布其评选的2020年十大科学突破,“以创纪录的速度开发和测试急需的新冠疫苗”当选头号突破。中国、美国、欧洲等地科研人员在2020年年初获得新冠病毒基因组序列后&#xff0…

openlayers实例_介绍OpenLayers

简介Web开发有一个专门的方向就是Web GIS,而Openlayers库就是Web GIS里的一个翘楚,想要开源的Web GIS的JavaScript库几乎就没有别的选择。OpenLayers的官网是OpenLayers - Welcome​openlayers.org目前最新的版本是5.3.x。它的github地址是openlayers/op…

macos Jetbrains IDEA用户自定义vm配置信息存储路径, IDEA点击无反应 无法打开问题解决

Jetbrains Clion, IDEA 用户在应用里面修改了自定义的VM配置后的存储路径为 ~/Library/Application Support/JetBrains/xxx2023.3/xxx.vmoptions xxx为你安装的APP名称, 如 Clion .IntelliJIdea 这里的自定义配置如果配置有误就会直接导致JetBrains软件无法打开, 即 点击打开…

Leetcode--322. 零钱兑换

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。 示例 1: 输入: coins [1, 2, 5], amount 11 输出: 3 解释: 11 5 5 1 示例 2: 输入: coins [2],…

【sping揭秘】19、关于spring中jdbctemplate中的DataSource怎么来呢

我们这是可以正好借助之前学的factorybean类&#xff0c;自己吧jdbctemplate加载到spring容器中&#xff0c;我们可以封装多个这种对象&#xff0c;那么可以实现针对不同的数据库的jdbctemplate 首先我们肯定要引入对应的jar&#xff0c;来构建数据源对象 <dependency>&l…

2020年度“中国神经科学重大进展”获奖名单【附成果介绍】

来源&#xff1a;brainnews编辑&#xff1a;Simon为了推动神经科学领域的创新发展&#xff0c;充分展示和宣传神经科学领域的重大科研成果&#xff0c;经中国神经科学学会七届二次常务理事会一致通过&#xff0c;开展2020年度“中国神经科学重大进展”推荐工作。按照相关程序&a…

python选择某一行_Python常用语法有哪些 如何快速入门Python开发

Python常用语法有哪些&#xff1f;如何快速入门Python开发&#xff1f;Python编程语言是最容易学习、并且功能强大的语言&#xff0c;吸引了很多人学习入行。很多人想知道如何快速入门Python开发&#xff0c;接下来就给大家分享Python学习入门中常用的语法知识。1、变量。常量&…

Java--线程同步

在单线程程序中&#xff0c;每次只做一件事情&#xff0c;后面的事情需要等待前面这件事情完成才可以进行 如果是多线程程序&#xff0c;这件事情还没做完就又做另外一件事情&#xff0c;这就可能发生两个线程抢占资源的问题 例如&#xff1a;a与b两个人都要去洗手间&#xf…

人类使用AI征服太空技术盘点,《星球大战》中的机器人会成为现实吗?

来源&#xff1a;学术头条作者&#xff1a;Thomas Lawrence一说起太空 AI&#xff0c;你脑海中浮现的是这样的角色吗&#xff1f;图 | 电影《星球大战》的AI机器人&#xff1a;C-3PO和R2-D2&#xff08;来源&#xff1a;starwars.fandom.com)实际上&#xff0c;早在现代计算机问…

springboot jar中没有主清单属性_Spring Boot 常见错误及解决方法

导读Spring Boot 作为 Java 生态中最流行的开发框架&#xff0c;意味着被数以万计的开发者所使用。下面根据我们自身遇到的问题&#xff0c;加上用户提供的一些反馈&#xff0c;来大致梳理下 Spring Boot 的常见错误及解决方法。找不到配置&#xff1f;配置不对&#xff1f;配置…

Leetcode--174. 地下城游戏

一些恶魔抓住了公主&#xff08;P&#xff09;并将她关在了地下城的右下角。地下城是由 M x N 个房间组成的二维网格。我们英勇的骑士&#xff08;K&#xff09;最初被安置在左上角的房间里&#xff0c;他必须穿过地下城并通过对抗恶魔来拯救公主。 骑士的初始健康点数为一个正…

[jQuery] 判断复选框checkbox是否选中checked

返回值是true/false method 1: $("#register").click(function(){if($("#accept").get(0).checked){alert($("#accept").get(0).checked);}else{alert($("#accept").get(0).checked);}});// 其中accept为复选框的id. 或者可以替换为: …

Nature:2020年10大科学发现

文章来源&#xff1a;新浪探索在2020年即将结束之际&#xff0c;《自然》&#xff08;Nature&#xff09;杂志盘点了今年发表的科学新闻和研究观点&#xff0c;从中选出了十项最为重大的科学发现&#xff0c;既包括新冠病毒研究、压力如何导致白发、HIV治疗等医学方面的研究&am…

php mysql上传多张图片_PHP实现一次性多张图片上传功能

原标题&#xff1a;PHP实现一次性多张图片上传功能最近遇到一个需求&#xff0c;就是多张图片上传&#xff0c;按住Ctrl键能选择多张图片一次性上传&#xff0c;上传成功后数据库保存图片的路径及图片原来的文件名。该功能一般在比较成熟的内容编辑器插件中有&#xff0c;今天特…

Leetcode--20. 有效的括号

给定一个只包括 (&#xff0c;)&#xff0c;{&#xff0c;}&#xff0c;[&#xff0c;] 的字符串&#xff0c;判断字符串是否有效。 有效字符串需满足&#xff1a; 左括号必须用相同类型的右括号闭合。 左括号必须以正确的顺序闭合。 注意空字符串可被认为是有效字符串。 示…

【2018.6.7】阶段总结

颓废了好久-.- 不记得从什么时候开始的了吧- 1. 好像是去年初赛翻车&#xff1f;&#xff09;&#xff09;归于以外好像也是我不对&#xff0c;&#xff0c;&#xff0c;总之很多&#xff0c;&#xff0c;不对的地方吧&#xff0c;&#xff0c;&#xff0c;我&#xff0c;&am…

车联网支持实现无人驾驶的思考

来源&#xff1a;机器学习研究组订阅号/ 导读 /无人驾驶是车辆作为运载工具智能化、网联化发展的核心应用功能&#xff0c;也是车联网、智慧交通产业发展的核心应用服务。网联无人驾驶则是在车辆智能化基础上&#xff0c;通过车联网实现车与车、车与路等的互联和信息交互&#…

mysql的代码需要保存吗_php向Mysql数据库保存数据的代码

php向Mysql数据库保存数据的代码PHP如何向MySQL数据库中写入数据你知道吗&#xff1f;你对PHP向MySQL数据库中写入数据了解吗&#xff1f;下面是小编为大家带来的php向Mysql数据库保存数据的代码&#xff0c;欢迎阅读。php向Mysql数据库保存数据的代码PHP向MySQL数据库中写入数…

Leetcode--150. 逆波兰表达式求值

根据逆波兰表示法&#xff0c;求表达式的值。 有效的运算符包括 , -, *, / 。每个运算对象可以是整数&#xff0c;也可以是另一个逆波兰表达式。 说明&#xff1a; 整数除法只保留整数部分。 给定逆波兰表达式总是有效的。换句话说&#xff0c;表达式总会得出有效数值且不存…