谈人工智能:深度学习对老牌AI

来源:李晓榕科学网博客

链接地址:http://blog.sciencenet.cn/blog-687793-1300748.html

学:学生,教:教师,李:李晓榕

李:三代人工智能都各有所本、各有所倚,也就各有所偏:第一代有赖于对机理规则的认识,第二代基于相关的专家知识库,以深度学习为代表的第三代依赖于相关实例的大数据库。前两代现在被称为“老牌AI”(Good Old-Fashioned AI),它们分别由原理和知识驱动,学界已相当了解其实用的难度和局限,兹不赘述。数据驱动的第三代难以克服根植于所用数据库的任何缺陷和局限。数据不够、不好、不全、有误或与当前任务失配,学习效果自然也就不会好。例如,用于训练或评价的数据缺乏针对性(对当前情况的独特性体现不够),过于陈旧(不再符合当前情况),体量不够大或种类不够丰富,有统计偏差(某些类数据太多或太少),过于宽泛笼统,不够全面完备,代表性不足,有死角、误导性或定性错误,等等。它还难以应对发生概率微乎其微的灾难性黑天鹅事件1:若学习中从未遇到这类事件,则不知如何应对(特斯拉自动驾驶车辆的几次致命事故都根植于此);而本不该发生的这类事件一旦发生,领教过其灾难性后果后,往往又会考虑过甚,反应过度(一朝经蛇咬,十年怕井绳)。这些都是数据驱动方法的固有软肋。可见,即便只专做一事,深度学习网络对数据库的要求也还是可能太高而不现实,更别说想要有通能。退一步说,纵然它原则上适用于通能,因任务五花八门,培训所需的合格数据库也会奇大无比,不现实。

学:什么叫“数据有死角”?李老师能不能解释一下?

李:以自动驾驶的深度学习网络为例。其输入主要是环境感知以及自身定位和运动状态的信息,但因成本所限,车上所装传感器有限,未必能足够可靠及时地采集到全方位足够的有用信息。这就是一种“数据死角”。特斯拉自动驾驶车辆的有些事故就根植于此。

另一方面,老牌AI专注于模仿人类智能的上层宏观抽象功能。与此迥异,深度学习网络受到人脑在信息处理下层微观具体结构方面的启示,其网络结构和参数是靠事例数据来训练确定的,其计算输出的自然形式是连续型的,而不是离散型或逻辑型的。这与涉及不确定性的问题的认知和决策等任务比较匹配,但它本身难以产生确定无疑的必然结果,与逻辑演算、推理演绎等要求绝对纯净、完全精确的抽象工作不很匹配,也难以胜任发现严格规律(比如机器证明)、构建逻辑规则、创立精确概念、更新人类知识、生发深层理解、提供新颖见解等逻辑层面或其他高层工作。这些都是深度学习这类统计数据训练方法的短板,但可以靠与其他方法结合来弥补。简言之,“面向机理或知识”的老牌AI更适用于基于书本智慧(book smart)追求精确“整洁”的抽象问题之解和硬规则硬约束,它难以对付矛盾的情况,其进步更依赖于通用机理等内部本质。而“面向任务”的深度学习网络更适用于基于市井智慧(street smart)、具有不确定性、本质“邋遢”或近似的具体问题和软规则软约束,它更着眼于、偏重于实用效果等外部表现,自然也就应用硕果累累,而理论成就寥寥。

学:为什么说深度学习网络与逻辑演算推理等要求完全精确的抽象工作不很匹配?

李:一个连线权重待定的人工神经网络(ANN)就是一个参数待定的函数,数据培训就是从中选取最合适者来拟合数据,其结果是一个权重确定的ANN,即一个参数确定的函数。ANN的万能近似定理说,前馈单隐层或深层ANN所构成的集合在连续函数集合中是稠密的,即:对于任一连续函数,都存在这种ANN能以任意精度近似它。这是ANN方法在功力上的主要理论支持。但是,逻辑演算、推理演绎等完全精确的抽象工作对应的函数并不连续,因而ANN对它的近似精度似乎缺乏完全的理论保障。特别地,深度学习是通过事例培训完成的,因其基于数据的概率统计本质,必受误差、噪声等各种不确定因素的影响,难以与精确工作匹配。形象地说,这种方法所得的拟合曲面不会像精确工作所对应的曲面那样“简洁干净”。

现代的黄金标准是科学化、数学化、抽象化。随着现代化和现代科技,包括人工智能技术的日益强大和深入人类活动,人的思维、行为和社会也随之日益机器化、程式化、规则化、精确化和标准化。因此,信息简化、算法思维、逻辑验算等体现科技特色的方面日渐普及,“只可意会,无法言传”的常识和直觉的地位江河日下,人文修养、伦理道德、精神生活的领域日渐缩小。这是现代人异化、机器化的一大趋势,逐渐造成了上述这两方面本该平衡的日趋严重失衡。老牌AI的发展无疑强化着这个趋势,而近年来勃兴的以深度学习为代表的基于统计数据培训的技术在精神实质上倒并非如此。

 老牌AI大都对应着表达明确简洁的外显知识,而由于缺乏归纳和抽象等能力,ANN靠监督学习或(强化学习等)非监督学习,所得知识更像无法简洁明确表达的默会知识或内隐知识(比如弹钢琴的本事)。西方知识观历来重外显、轻内隐。深度学习的大获成功,让这种“非简洁外显知识”扬眉吐气。不过,深度学习网络往往“能做而不会表达,也不善于规划”,而一般认为善于规划是高智能的起码要求。老牌AI难以对付软问题。对于硬问题,ANN难以无指导地自主得到精确解,但随着规模的增大可能逼近精确解。对此,一个辩护是:所谓硬问题的精确解原本就是假想情况下假想问题的理想解,而非实际情形下实际问题的实际解。在深度学习网络中,分布式表示的概念都是模糊的“概念云”,而非边界清晰的“概念子”,这与大多数实际情况比较相近。

 前面说过,西方文化传统更依赖于“粒子、元素、单位、定位、精确”等观念,中国文化传统更依赖于“场、波、气、云、关系、网络、模糊”等观念。由此看来,相对而言,老牌AI更具西方特色,深度学习网络更具东方特色。ANN的分布式表示更偏向于中国式、关系式的表示,其中概念和概括的产生、相关、变化、分化等都更灵活,不像定位表示那么死板难解。这也与上述趋势相符。

再者,人工智能研究迄今三代全都专注于智能的生理或行为基础方面,而忽视智能的社会属性。而正是人的社会属性需求产生了语言、自我表达和自我意识,人类智能所依赖的语言、文字、知识、经验乃至意识等都是在社会生活中产生和发展的,都带有文化的烙印。社会性是人区别于其他动物的一大鲜明标志,对人类智能的构成有重大意义。狼孩的例子足以说明社会性的重要。还有,包括深度学习在内,人工智能研究大都不够重视智能的动态性、时变性,即时间维度,它们更适用于静态问题。

 再一方面,深度学习因其数据驱动的本质,相应的研发缺乏理论指导,像靠试错法配方来炼“智能仙丹”。这类通用的东西,往往有个强大普适的框架,但面对特定问题缺乏理论指导,没有比较系统的应对方法,致使研发者成为“炼丹师”。

学:听了李老师这么说,还是不知道人工智能到底是不是个大有作为的专业。

李:如果你感兴趣的是“既能又智”的真正智能,那要小心不被忽悠上当。如果你感兴趣的是“专能”,那人工智能(像不少其他专业一样)是不错的专业。纵然如此,也要做好充分的思想准备。近期内,人工智能的研究以应用大数据深度学习来解决具体问题为主。绝大多数这类研究(尤其是科研新手的工作)缺乏创意而枯燥乏味,包括标定大量数据,靠“试错法”配方来调参的“炼丹”,测试各种方案的结果好坏,等等。这样的工作会极大消耗你的热情和冲动。真正针对基本方法的研究,在其中想必是凤毛麟角。

总之,我认为,以往的人工智能只是“有小技而欠能不智”,当前以大数据深度学习为代表的人工智能大概是“有专能而欠智”,我相信它无法达到、更遑论在近期内达到“既能又智”,我甚至难以相信非生物的无机机器能达到“既能又智”。要在未来达到“既能又智”、最终超越人类智能,得靠经人类改造后的生命与机器的有机结合,而这种研究应有前提:先期或同步提升道德修为,既智慧卓绝又道德高尚。

______________________________

1. 李世石在与阿尔法狗人机大战第四局的白78手,就是一起黑天鹅事件。阿尔法狗未考虑这一被判定为万分之一概率的“神来之笔”,从而满盘皆输。它也无法考虑概率如此小的事件,否则来不及计算。一般而言,复杂系统的反应无法预测,且有远离绝大多数情形的灾难性黑天鹅事件。如果训练数据中没有相近的事例,深度学习的产品可能会大冒傻气,为了完成任务而犯傻闯祸,做未被明确禁止的傻事祸事。比如:为了最大化主人新书的销售而雇杀手暗杀主人以引起轰动效应(参见Dan Brown, Origin);为了看清煤气室中的东西而点燃蜡烛;要让车内的朋友下车而又不慎把车钥匙锁在车内时,求助于开锁服务。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/483950.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenGL之Phong光照模型和Blinn-Phong光照模型的局限性、OpenGL光照参数设置与光照模式

一、相关概念 1.1 Phong、Blinn-Phong光照模型是一种简单光照模型,它仅考虑了光源直接照射的效果,没有考虑非直接光照的效果。如下直接光照与间接光照。 1.2 上述模型在考虑间接光照(环境光)时,采用的是一个常数来表…

OpenGL之图形流水线中的光照计算、明暗处理

1.1 光照计算发生在图形流水线的Vertex Operations中,只计算每个顶点的颜色,而三角形内部的点的颜色在Fragment Operations阶段通计算,这样效率高,因为像素的数量远远大于顶点的数量。 1.2 计算三角形内每个像素的颜色的过程&am…

教学5层网络体系结构——分层之后数据的发送和接收

协议分层后数据发送过程 发送方层层封装 接收方层层解封装 唯一加尾部的是数据链路层 思考 发送方某层封装完如何知道该交给哪个下层封装? 应用层选择传输层由应用程序决定,传输层选择网络层由固定的搭配,例如因特网只有IP协议&#x…

从视觉系统的原理入手 破解VR眩晕症

来源:EETimes编译:科技行者虚拟现实技术近年来迎来一波快速发展,适用范围也扩展到更多领域,引得众多老牌巨头纷纷参与。然而,VR技术自身仍存在一些极难解决的缺陷,如果无法攻克,技术的进一步普及…

小组会谈(2019.3.14)

一:会议主题 1.确定项目的立题 2.讨论需要实现的功能 3.确定小组成员之间的分工和完成各自任务的期限 二:会议地点 逸夫楼C座一楼 三:会议时间 2018年3月14日10:00--11:20 四:会议内容 1.项目的立题&#x…

应用层相关概念

一、应用层概述 1、应用层协议基本概念 应用层的功能 应用层协议定义了应用程序需交换的报文、所需采取的动作和最终通信数据的应用应用层位于协议栈的最高层次应用层协议提供不同主机之间进程与进程之间的通信用户代理实现应用层协议 套接字 IP端口号,唯一确定…

迎来智能数据分析的新时代

来源:知乎(ID:熊墨淼)最近两星期(7月15日,7月22日),《自然》杂志连续发表两篇DeepMind写的用人工智能的方法预测蛋白质三维结构的文章和NIH Director Francis Collins 写的博客 "Artificial Intelligence Accurately P…

2019春季第三周作业

2019年春季学期第三周作业基础作业 本周没上课,但是请大家不要忘记学习。 本周请大家完成上周挑战作业的第一部分:给定一个整数数组(包含正负数),找到一个具有最大和的子数组,返回其最大的子数组的和。 例如:[1, -2, 3…

DNS域名系统详解

一、分层次的域名结构 顶级域名、 二级域名、 三级域名、 四级域名 二、因特网的域名结构 因特网采用了层次树状结构的命名方法,称为域名,如:www.jxnu.edu.cn 三级域名:如www表示万维网 二级域名:如jxnu表示江西师…

侯世达:让机器学习思考的人

图源:GREG RUFFING来源:利维坦文:James Somers原文:www.theatlantic.com/magazine/archive/2013/11/the-man-who-would-teach-machines-to-think/309529/译文原载:《新知》杂志侯世达(Douglas Hofstadter&a…

日记——2019-03-12

感遇(其一) 张九龄 兰叶春葳蕤,桂华秋皎洁。 欣欣此生意,自尔为佳节。 谁知林栖者,闻风坐相悦。 草木有本心,何求美人折? 我的爱人快乐而且善良,但是不容易,遇见——庞德…

www万维网和HTTP协议

万维网的相关概念 万维网的客户端程序 浏览器:IE、firefox、chrome 万维网的服务器端软件 IIS,Tomcat、Apache 万维网的模式 采用C/S模式 Web页面 由文字、图片、声音、视频等多种对象组成 HTTP协议 Web页面传输方式 如何标志分布在因特网上的…

游戏中应用强化学习技术,目的就是要打败人类玩家?

来源:AI前线作者:凌敏采访嘉宾:黄鸿波2016 年,DeepMind 公司开发的 AlphaGo 4:1 大胜韩国著名棋手李世石,成为第一个战胜围棋世界冠军的人工智能机器人,一时风头无两。AlphaGo 的巨大成功开启了“人工智能元…

HTTP报文的格式

一、HTTP请求报文的格式 两个回车换行表示首部的结尾注意:HTTP协议首部使用ASCII码作为编码方式HTTP请求报文提交表单时会包含数据 二、HTTP响应报文格式

Transformer走下神坛?南加州大学教授:想解决常识问题,神经网络不是答案

来源:nextgov转自:新智元编辑:LRS如果说人工智能和真正的人脑之间的差距,那最重要的就是机器缺乏生活中的常识。一切貌似合理、理所当然的事物在计算机眼中都是不可理解的。计算机不知道「柠檬是酸的」,「只有成熟的香…

FTP协议、电子邮件系统与Telnet远程控制

一、FTP协议概述 FTP定义 文件传输协议用于因特网文件传输 FTP特性 使用客户端/服务器模式使用TCP提供可靠的传输FTP属于维护状态的协议FTP使用两条TCP连接完成数据传输 FTP的两条连接 数据连接问题 当有具体文件或目录内容传输时,临时建立数据连接主动模式下…

吴志强院士:CIM与城市未来

▲吴志强:博士,教授,中国工程院院士,德国工程科学院院士,瑞典皇家工程科学院院士,同济大学原副校长,中国城市规划学会副理事长,中国2010年上海世博会园区总规划师,北京城…

传输层协议详解

一、传输层的概念和服务 1、传输层的基本概念 传输层负责端到端之间的数据传输控制传输层依赖于网络层的服务,对应用层提供传输服务 2、传输层的功能 跟踪会话 跟踪源主机和目的主机上应用程序间的每次通信 数据分段 将数据分段,并管理每个分段 …

在后SCI时代需要什么样的人才?

来源:秦四清科学网博客。链接地址:http://blog.sciencenet.cn/blog-575926-1302503.html近些年,国家陆续出台了一系列破“五唯”举措,这标志着后SCI 时代的到来。大家知道,创新是引领发展的第一驱动力,而创…

OpenGL之纹理过滤(Texture Filtering)、MipMap方法、纹理坐标

1.1 纹理过滤 像素、片元都是具有面积的,一个像素可能对应物体上的一小块区域,而物体上这个小区域对应于纹理图像上的一个小区域,因此一个像素的颜色可能来自于纹理中的一小个不规则区域,如果纹理的分辨率比较高,则这…