所有的科学知识都是不确定的

b4c00129c273299c4bb14450bb04b295.png

理查德·菲利普·费曼(Richard Phillips Feynman),1918年5月11日—1988年2月15日,美国著名理论物理学家,1965年,因在量子电动力学方面的成就而获得诺贝尔物理学奖。

来源:科学技术哲学

一、不存在决定什么是好概念的权威 

观察是一个概念是否含有真理的判官,但这个概念从何而来的呢?科学的快速进步和发展要求人类发明出一些东西用以检验。

在中世纪,人们认为只要多做观察,观察结果本身就会产生出法则。但这种做法并不有效。在这里想象力更为重要。因此接下来,我们要谈的是新概念从何而来。实际上,重要的是要有新概念,至于它们从何而来并不重要。

我们有办法检验一个概念是否正确,这与它来自何方不相干。我们只管检查它是否与观察结果相抵触。因此在科学上,我们对一个概念是怎么产生的并不感兴趣。

不存在决定什么是好概念的权威。我们早已不需要通过权威来确定一个概念的正确与否。我们可以参考权威的意见,请他提出某些建议。然后我们可以尝试这些建议,看看它们是不是正确。如果不正确,甚至更糟糕——那么,“权威”也就失去了其“权威”。

起初科学家之间的关系充满争执,因为他们属于一群最能辩的人。例如,早期物理学就是这种情形。但今天物理学界里的关系则非常好。科学论战可能会充满着笑声,争论双方都有不确定性,双方都在构思实验并打赌说会出现什么结果。

在物理学里,积累的观测数据是如此丰富,你几乎不可能想出什么新概念,它既不同于此前已有的概念,又能够与现有的所有观察结果相一致。因此,如果你从什么地方的什么人那里得到了新东西,你只会高兴,不会争论说为什么其他人说什么什么的。

许多学科还没有发展到这一步,而是有点类似于物理学初期的情形,当时有很多争论,因为没有那么多观察结果可凭据。我提出这一点,是因为这是一个有趣的现象:人与人之间的关系,如果有一套独立的检验真理的方式,就会变得不那么争论不休。

二、令人惊讶,人们不相信科学研究中存在想象力

大多数人都觉得奇怪,在科学上,人们并不关心某个概念提出者的背景,或他提出这一概念的动机。你只需要听,如果这个点子听起来值得一试,而且可以一试,它与众不同,却并不明显与以前的观察结果相抵触,那么它就会令人兴奋并值得去试。

你不必在意他研究了多久,为什么他会找到你来讨论。从这个意义上说,这个想法出自何处无关紧要。它们的真正源头是未知数,我们称之为人类大脑的想像力,一种创造性的想象力——要说它是已知的,那它就是一种“活力”。

令人惊讶的是人们不相信科学研究中存在想象力。这是一种非常有趣的想象力,它不同于艺术家的想像力。发挥这种想象力最难的是你要构想出一种你从来没有见过的东西,它的每一个细节都与已有的东西相一致,但它本身则与所有已能想到的不同。此外,它必须非常明确,而不是一个模糊的命题。这确实困难。

顺便说一句,我们有各种可进行检验的法则这本身就是个奇迹。有可能找到一条法则,如万有引力的平方反比律,就是某种奇迹。我们对这条法则可能并不完全知其所以然,但它能提供预测的可能性——这意味着它能告诉你,在你还没进行的实验中你能预期会发现什么。

有趣的是,同时也是绝对不可或缺的是,各种科学法则之间是相互一致的。由于观测结果具有同一性,因此对同一个现象不可能出现一条法则预言的是这种结果,而另一条法则预言的则是另一种结果。

因此,科学不是某个专家的专利,它完全是普适的。我在生理学中讨论原子,在天文学、电学和化学里也讨论原子。它们都具有普适性,都必须相互一致。你不能用不能由原子构成的新事物来作为开端。

f60ffc65de00987da70ee2fc282ad81b.png

有趣的还有,推理在猜测法则的过程中很有用,各种法则,至少在物理学里是这样,会因此减少。我在前面给了将化学里的一条法则和电学里的一条法则合而为一的例子,这是减少法则的一个很好的例证。但还有更多的例子。

描述自然的法则似乎都具有数学形式。这不是以观察结果作为判据的结果,也不是科学所必需的一种特性。而只是表明,至少在物理学领域是这样,你可以将定律写成数学形式,这样会具有强大的预测能力。至于大自然为什么是数学的,同样也是一个未解之谜。 

三、所有的科学知识都是不确定的 

现在我要谈一个重要问题,那就是旧有的定律可能是错的。观察怎么会不正确呢?如果它已得到仔细检查,结论又怎么会不对呢?为什么物理学家总在变更定律呢?

答案是,第一,定律不是观察结果;第二,实验总是不精确的。定律都是猜中的规律和推断,而不是观察所坚持的东西。它们只是好的猜想,到目前为止一直都能通过观察检验这副筛子。

但后来知道,眼下的这副筛子的网眼要比以前使用的更小,于是这条定律就过不去了。因此说,定律都是猜测出来的,是对未知事物的一种推断。你不知道会发生什么事情,所以你需要猜测。

例如,我们一度曾认为——人们发现——运动不会影响到物体的重量,就是说,如果你旋转一个陀螺并称量它,然后在它停止后再称量它,结果称出来的重量相同。这是一个观察的结果。但是你不可能将物体重量精确到小数点后无限多位,譬如十亿分之一。

但现在我们知道,旋转的陀螺要比静止的陀螺重不到十亿分之一。如果陀螺旋转得足够快,使得边缘速度接近每秒186,000英里(即光速——译注),那么重量增加的就很可观了——但现在我们还做不到这一点。第一次对比实验是陀螺的速度远低于每秒186,000英里的条件下进行的。转动的和静止的陀螺质量读出来都一样,于是人们猜想,质量不随运动状态而变化。

多么愚蠢!真是一个傻瓜!这只是一种猜测,一种外推。他怎么会做出如此不科学的事情来?其实这里无所谓不科学,只是不确定。不做猜测那才真叫不科学呢。人们一定会这么做,因为在这里推断是唯一真正有价值的事情。

只有面对尚未有人尝试过的局面来预言将会发生什么事情,才值得去做。如果你能告诉我的只是昨天发生的事情,这种知识没有什么真正的价值。有用的知识必须是,如果你做了一些事情,就能告诉我明天会发生什么——这不仅必要,而且也很好玩。只是你必须愿意承担出错的风险。

每一条科学定律,每一条科学原理,每一项观察结果的陈述都是某种形式的删繁就简的概述,因为任何事情都不可能得到准确的描述。

上述那位猜测者只是忘了——他本该这样来陈述定律:“只要物体的速度不是太大,物体的质量就不会有明显变化。”这种游戏就是先制定明确的法则,然后再看它是否能通过观察之筛。

因此,这里具体的猜测是,质量从不改变。多么令人兴奋的可能性!不管实际情形是不是如此,它都没有害处,只是不确定。而不确定性并不造成损害。提出一种猜测尽管不确定但总比什么都不说要好。

有必要指出,实际情形也确实是这样,我们在科学研究中所说的一切,所得出的所有结论,都具有不确定性,因为它们只是结论。它们是关于会发生什么事情的猜测。你不可能知道会发生什么,因为你不可能进行最完备的实验。

奇怪的是,旋转陀螺的质量效应是如此之小,你可能会说,“哦,这没什么区别呀。”但是为了得到一项正确的法则,或者至少是为了能够通过不断出现的筛子,就需要进行更多的观察,需要非凡的智慧和想象力,还需要对我们的哲学、我们对空间和时间的理解进行彻底的更新。我指的是相对论。事情往往就是这样,一旦出现些微的效应,就需要对现有概念进行极具革命性的修正。

因此,科学家已习惯于对付存疑和不确定性。所有的科学知识都是不确定的。这种与怀疑和不确定性打交道的经验很重要。我相信它具有非常大的价值,并且能够应用于科学以外的领域。

我相信,要解决任何过去一直悬而未决的问题,你必须向未知领域敞开大门。你必须允许出现可能不完全正确的情形。否则,如果你已经心有成见,就很可能解决不了这个问题。 

四、怀疑精神具有明显的价值

当科学家告诉你他不知道答案,说明他对这个问题还不清楚。当他告诉你他预感到应当如何去着手工作时,表明他对问题的解决还不是很确定。当他可以肯定事情是怎样进行的,并告诉你,“我敢打赌,这么做肯定行”的时候,表明他仍然有一些疑问。

而且最重要的是,为了取得进展,我们必须容许这种无知和疑虑。正因为我们心存疑虑,我们才会在新的方向上探求新的设想。科学发展的速度不取决于你取得观察结果的速度,更重要的是看你创建用于检验的新东西的速度。

如果我们不能够或不希望从新的方向看问题,如果我们没有疑问或否认无知,我们就不会产生任何新的想法。那样的话也就没有什么值得检验了,因为我们知道什么是对的。

因此,我们今天称之为科学的东西是一套对确定性程度各不相同的知识的陈述。其中有些知识最不确定,有些几乎可以肯定,但没有一个是绝对肯定的。科学家对此已经习以为常。

我们知道,人都能生活在这个世上并且对很多事情并不知情,二者间并无矛盾。有人会说:“你啥都不知道怎么可能活着?”我不知道他们的意思。我永远是活在很多东西都不知道的状态中。这很容易。你怎么知道我想知道啥。

在科学上允许有这种怀疑的自由是非常重要的,而且我相信在其他领域也是如此。它是斗争的产物。这是为获准怀疑、为容许存在不确定而进行的斗争。我不希望我们忘记这种斗争的重要性,默认事情就这么发展下去而无所作为。

作为一个懂得一种可以接受的无知哲学的巨大价值,知道这种哲学有可能带来进步,一种作为思想自由产物的进步的科学家,我感到有一种责任。我有责任宣扬这种自由的价值,并告诫人们:怀疑不可怕,而应予欢迎,把它当作人类一种新的潜在的可能性来欢迎。

如果你知道你还不能确定,你就有机会来改善这种局面。我要为后代争取这种自由。在科学上,怀疑精神具有明显的价值。在其他领域是不是这样我不敢说,这是个不确定的问题。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

9c78e2e79e86a107ce2e75d00e51dde1.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/482838.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2.1.1物理层基本概念

2.1.1物理层基本概念 文章目录2.1.1物理层基本概念

神经网络为大脑如何运作提供新见解

来源:ScienceAI编辑:萝卜皮单细胞空间转录组学(sc-ST)有望阐明复杂组织的结构方面。此类分析需要通过将 sc-ST 数据集中的细胞类型与单细胞 RNA-seq 数据集集成来对它们进行建模。然而,这种整合并非微不足道&#xff0…

2.1.2数据通信基础知识

文章目录2.1.2数据通信基础知识0 思维导图1. 典型的数据通信模型2 数据通信相关术语3 三种通信方式4 两种数据传输方式2.1.2数据通信基础知识 0 思维导图 1. 典型的数据通信模型 2 数据通信相关术语 3 三种通信方式 4 两种数据传输方式

一文读懂MEMS技术4大主要分类及应用领域

来源:传感器专家网MEMS传感器是在微电子技术基础上发展起来的多学科交叉的前沿研究领域。经过四十多年的发展,已成为世界瞩目的重大科技领域之一。它涉及电子、机械、材料、物理学、化学、生物学、医学等多种学科与技术,具有广阔的应用前景。…

2.1.3码元、波特、速率、带宽

2.1.3码元、波特、速率、带宽 文章目录2.1.3码元、波特、速率、带宽0 思维导图1.码元2. 速率,波特,带宽练习题0 思维导图 1.码元 2. 速率,波特,带宽 练习题

模拟电路人工智能神经网络的前景

ISTOCKPHOTO来源:IEEE电气电子工程师未来驱动人工智能的一些最佳电路可能是模拟电路,而不是数字电路,世界各地的研究团队正在越来越多地开发支持此类模拟人工智能的新设备。在驱动AI当前爆炸的深层神经网络中,最基本的计算是乘法累…

CSS-盒子模型

CSS盒子模型 盒子模型解释 元素在页面中显示成一个方块,类似一个盒子,CSS盒子模型就是使用实现中盒子来做比喻,帮助我们设置元素对应的样式。盒子模型示意图如下: 把元素叫做盒子,设置对应的样式分别为: 盒…

2.1.4 ★(考察计算能力)奈氏准则和香农定理

2.1.4 奈氏准则和香农定理 文章目录2.1.4 奈氏准则和香农定理0.思维导图1. 失真2. 失真的一种现象--码间串扰3.奈氏准则(奈奎斯特定理)4. 奈氏准则(奈奎斯特定理)-练5. 香农定理6. 香农定理-例题7. “nice”和“香浓”对比0.思维导图 1. 失真 2. 失真的一种现象–码间串扰 3.奈…

未来哲学的六个问题域

来源:中科院哲学所作者:约翰R塞尔(John R. Searle)译者:GTY约翰塞尔生于1932年,当代著名哲学家,现为美国加州大学伯克利分校Slusser哲学教授,在语言哲学、心灵哲学和社会哲学领域贡献…

2.2_ 4_ FCFS、SJF、 HRRN调度算法

文章目录知识总览先来先服务短作业优先高响应比优先知识回顾和重要考点知识总览 先来先服务 短作业优先 高响应比优先 知识回顾和重要考点

当AI学会高数:解题、出题、评分样样都行

来源:AI科技评论“高等数学里程碑式的研究”,114页论文让AI文理双修,也许不久后机器出的高数试卷就会走进高校课堂,这下可以说“高数题不是人出的了”。人工智能虽然给我们带来了诸多便利,但也不免受到了各种质疑。在互…

2.3_ 1_ 进程同步、进程互斥

2.3_ 1_ 进程同步、进程互斥 文章目录2.3_ 1_ 进程同步、进程互斥1.知识概览2.什么是进程同步?2.什么是进程互斥3.知识回顾1.知识概览 2.什么是进程同步? 2.什么是进程互斥 3.知识回顾

IEEE Fellow李世鹏 :人工智能与机器人前沿研究之思考

来源:AI科技评论作者:维克多编辑:青暮2021年12月9日,由粤港澳大湾区人工智能与机器人联合会、雷峰网合办的第六届全球人工智能与机器人大会(GAIR 2021)在深圳正式启幕,140余位产学领袖、30位Fel…

2.3.2. 进程互斥的软件实现方法

2.3.2. 进程互斥的软件实现方法 文章目录2.3.2. 进程互斥的软件实现方法1.知识总览2.单标志法3.双标志先检查法4.双标志后检查法5. perterson算法6. 知识回顾1.知识总览 2.单标志法 3.双标志先检查法 4.双标志后检查法 5. perterson算法 6. 知识回顾

哲学的终极解释:48张图了解48种主义

来源:今日头条编辑:nhyilin哲学家建立了事物的基本概念,我们在讨论中遵循它,有时误用它,有时颠覆它。以下48个基本概念常常出现在公共讨论里,伦敦设计师Genis Carreras用最简单的线条、形状和色块对它们进行…

2.1.5编码与调制(1)

文章目录2.1.5编码与调制(1)1.基带信号与宽带信号2. 编码与调制2.1.5编码与调制(1) 1.基带信号与宽带信号 2. 编码与调制

改名Meta俩月,脸书放弃虚拟现实操作系统:负责人跳槽谷歌

来源:机器学习研究组订阅元宇宙,到头来还得是安卓系统?这些年来,facebook 在增强现实和虚拟现实领域投入了大量资金。扎克伯格甚至已经把公司名称改成了 Meta,认为元宇宙将是公司未来的主营业务,不过理想很…

2.2物理层传输介质

2.2物理层传输介质 文章目录2.2物理层传输介质1. 传输介质和分类2.导向性传输介质--1.双绞线3.导向性传输介质--2.同轴电缆4.非导向性传输介质思维导图1. 传输介质和分类 2.导向性传输介质–1.双绞线 3.导向性传输介质–2.同轴电缆 4.非导向性传输介质 思维导图

C#拼装JSON数组简易方法

下面是我们想要拼接出来的JSON字符串,返回给前台 1 {"success":"true","msg":"","data":[{"macName":"正面预拼装机","state":1.0},{"macName":"正面拼板压力架&q…

IEEE年终AI大盘点:网友教会GPT-3骂人、DeepMind再造机器人

来源:新智元【导读】2021年即将过去,IEEE Spectrum盘点了今年的十大AI新闻。在过去的一年里,AI模型训练成本起飞、GPT-3从网友那儿学会了「阴阳怪气」,此外,研究人员还总结了AI绕不过去的七大弱点。2021 年&#xff0c…