CV未来在这68张图上?Google Brain深扒ImageNet:顶级模型全都预测失败

7f138149aac0110e0ba4eb757b6f7fef.png

来源:新智元

编辑:LRS

【新智元导读】ImageNet的标签问题一直为人诟病,最近Google Brain全面分析了基准内遗留的历史问题,并找出了所有顶级模型全都预测失败的68张图片,或许未来CV想取得突破,先得攻破这68关!

过去的十年里,ImageNet基本就是计算机视觉领域的「晴雨表」,看准确率有没有提升,就知道有没有新技术问世。

「刷榜」一直是模型创新的原动力,把模型Top-1准确率推动到90%+,比人类还高。

881bb3a0e69ad295d0ac2a4ea1a0f05d.png

但ImageNet数据集是否真的像我们想象中的那么有用?

很多论文都曾对ImageNet发出质疑,比如数据的覆盖度、偏见问题、标签是否完善等等。

其中最重要的是,模型90%的准确率是否真的准确?

最近Google Brain团队和加州大学伯克利分校的研究人员重新审视了几个sota模型的预测结果,发现模型真正的准确率还可能被低估了!

40e9e5ae3c6e31b241b9e998eddfa46e.png

论文链接:https://arxiv.org/pdf/2205.04596.pdf

研究人员通过对一些顶级模型所犯的每一个错误进行人工审查和分类,以便深入了解基准数据集的长尾错误。

其中主要关注ImageNet的多标签子集评估,最好的模型已经能达到97%的Top-1的准确率。

3542a6e1074792634f6230564fd1233c.png

这项研究的分析结果显示,将近一半的所谓的预测错误根本就不是错误,并且还在图片中发现了新的多标签,也就是说,如果没有人工审查过预测结果,这些模型的性能可能都是被「低估」的!

不熟练的众包数据标注员往往会把数据标注错误,在很大程度上也影响了模型准确率的真实性。

为了校准ImageNet数据集,促进未来的良性进展,研究人员在文中提供了一个更新版的多标签评估集,并把sota模型预测存在明显错误的68个例子组合为一个新数据集ImageNet-Major,以方便未来CV研究者攻克这些bad case

还上「技术债」

从文章的标题「什么时候面团成了百吉饼?」就可以看出作者主要关注ImageNet里的标签问题,这也属于是历史遗留问题了。

下图是一个非常典型的标签歧义例子,图片里的标签为「面团」,模型的预测结果为「百吉饼」,错了吗?

e141561a72c5a6e1c80b5f994503d50e.png

这个模型理论上来说并没有预测错误,因为面团正在烤,马上就要成百吉饼了,所以既是面团又是百吉饼。

可以见得模型实际上已经能够预测到这个面团「即将成为」百吉饼,但在准确率上却没有拿到这一分。

实际上,以标准ImageNet数据集的分类任务作为评价标准,缺乏多标签、标签噪声、未指定的类别等问题都在所难免。

70fb5b4b584fc9bce2151647baab0bba.png

从负责识别此类对象的众包标注员的角度来看,这是一个语义甚至是哲学上的难题,只能通过多标签来解决,所以在ImageNet的衍生数据集中主要改善的就是标签问题。

距ImageNet成立已经过了16年,当时的标注人员、模型开发者对数据的理解肯定不如今天丰富,而ImageNet又是早期的大容量、标注相对良好的数据集,所以ImageNet很自然而然地成了CV刷榜的标准。

但标注数据的预算显然不如开发模型来的多,所以标签问题的改善也成了一种技术债。

为了找出ImageNet中剩下的错误,研究人员使用了一个具有 30 亿参数的标准ViT-3B模型(能够达到 89.5% 的准确度),其中JFT-3B作为预训练模型,并在ImageNet-1K上进行了微调。

使用ImageNet2012_multilabel的数据集作为测试集的情况下,ViT-3B初步达到的准确率为96.3%,其中模型明显错误预测了676个图像,然后对这些例子进行深入研究。

在重新标注数据时,作者没有选择众包,而是组建了一个5名专家评审组成的小组进行标注,因为这类标注错误对于非专业人员来说很难识别出来。

比如图(a),普通的标注人员可能写一个「桌子」就过了,但实际上图片里还有很多其他物体,比如屏幕、显示器、马克杯等等。

bddbb03a5b62228c00ed54f19468cb8b.png

图(b)的主体为两个人,但标签为picket fence(栅栏),显然也是不完善的,可能的标签还有领结、制服等等。

图(c)也是一个明显的例子,如果只标出来「非洲象」,那象牙可能就被忽视掉了。

图(d)的标签为lakeshore(湖岸),但标注成seashore(海滨)实际上也没毛病。

为了增加标注效率,研究者还开发了一个专用的工具,能够同时显示模型预测的类别、预测分数、标签和图像。

a38354e44892ea8e2983b603863d5ce8.png

在某些情况下,专家组之间可能还存在标签的争议,这时候就把图片放到谷歌搜索里来辅助标注。

比如说有一个例子里,模型的预测结果里包含出租车,但图片里面除了「一点黄色」之外根本没有出租车的牌子。

这张图片的标注主要是通过谷歌图片搜索发现图像的背景是一个标志性的桥梁,然后研究人员定位到了图片所在的城市,对该城市中的出租车图像进行检索后,认可了这张图片里确实包含出租车而非一辆普通的汽车。并且从车牌的设计上进行对比,也验证了模型的预测是正确的。

在对研究的几个阶段发现的错误进行初步审查后,作者首先根据错误的严重程度将其分为两类:

1. 主要错误(Major):人类能够理解标签的含义,并且模型的预测和标签完全不沾边;

2. 次要错误(Minor):标签的可能是错误的或者不完善导致的预测错误。需要专家审查数据后进行纠正。

60f0031db4a448bc2a99be26b67c8893.png

对于ViT-3B模型犯的155个主要错误,研究人员又找了其他三个模型共同预测来提高预测结果的多样性。

四个模型全都预测失败的主要错误有68个,然后分析了所有模型对这些例子的预测,并验证了它们没有一个是正确的新的多标签,即每个模型的预测结果确实都是主要错误。

这68个例子有几个共同特点,首先就是不同方式训练的sota模型都在这个子集上犯了错误、并且专家评审也认为预测结果完全和正确不沾边。

68张图像的数据集也足够小,方便后续研究者进行人工评估,如果未来攻克了这68个例子,那CV模型也许会取得新突破。

通过分析数据,研究者又将预测错误划分为四种类型:

1. 细粒度错误,其中预测的类别跟真实标签相似,但不完全相同;

2. 具有词表外(OOV)的细粒度,其中模型识别其类别正确但在 ImageNet 中不存在该对象的类别;

3. 虚假相关性,其中预测的标签是从图像的上下文中读取的;

4. 非原型,其中标签中的对象与预测标签相似、但并非完全一致。

b87541143e7e54b1fa6f7478e260ecbe.png

在审查了原始 676 个错误后,研究人员发现其中298 个应该是正确的,或者可以确定原始标签是错误或有问题的。

bc2760d2dd8b3eaeb3402cea363dcc9f.png

总的来说,通过文章的研究结果可以得出四个结论:

1. 当一个大型、高精度模型做出其他模型没有的新预测时,大概其中50%都是正确的新多标签;

2. 更高精度的模型在类别和错误严重性之间没有表现出明显的相关性;

3. 如今SOTA模型在人工评估的多标签子集上的表现在很大程度上匹配或超过了最佳专家人类的表现;

4. 有噪音的训练数据和未指定的类别可能是限制有效衡量图像分类改进的一个因素。

或许图像标签问题还得等待自然语言处理技术来解决?

参考资料:

https://www.unite.ai/assessing-the-historical-accuracy-of-imagenet/

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

7befb0bbf3b6ddfdc2d2dd7b20920e71.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/482041.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

谷歌夺回AI画语权,机器的想象力达到全新高度,网友:DALL·E 2诞生一个月就过时了?...

来源:量子位在让AI搞创作这件事上,谷歌和OpenAI正面刚起来了。这不,震惊全网的DALLE 2才新鲜出炉一个月,谷歌就派出名为Imagen的选手来打擂台。直接上图对比,左边是谷歌Imagen选手眼中的“猫猫绊倒人类雕像”&#xff…

Linux安装MySQL的完整步骤并有关MySQL8.0版本的问题方法

目录 QUESTION:Linux安装MySQL的完整步骤? ANSWER: 一:使用wget 直接下载 二:安转软件源,将platform-and-version-specific-package-name 替换为你下载的rpm名 三:安装mysql服务端 四:首先启动mysql 五&#x…

研究遭质疑,Jeff Dean回应:我们本就不是为得到新SOTA,成本计算也搞错了

来源:机器之心编辑:杜伟、陈萍对于 Jeff Dean 的回复,你认同吗?昨日,整个社区最热门的话题无外乎是 reddit 上一名机器学习研究者对谷歌 AI 负责人 Jeff Dean 参与论文的质疑。这篇论文是《An Evolutionary Approach t…

全脑地图:单个记忆被拆分存储在多个相连的大脑区域

来源:神经生物学根据一项创新的脑域映射研究,单一的记忆被存储在许多连接的大脑区域。创新的脑成像研究表明,“记忆印记”,编码记忆的神经元集合,广泛分布,包括在以前没有意识到的区域。麻省理工学院皮考尔…

李德毅 | 新一代人工智能如何从传统人工智能中脱颖而出

来源:图灵人工智能 作者:李德毅 中国工程院院士、CAAI名誉理事长、主线科技首席科学家2021年4月10日,“吴文俊人工智能科学技术奖”十周年颁奖盛典在北京举办。颁奖典礼上,中国工程院院士、中国人工智能学会名誉理事长李德毅荣获…

【强基固本】现在的人工智能是否走上了数学的极端?

来源:知乎—谢凌曦地址:https://www.zhihu.com/question/519393525/answer/2430233113“强基固本,行稳致远”,科学研究离不开理论基础,人工智能学科更是需要数学、物理、神经科学等基础学科提供有力支撑,为…

智源发布线虫生命模型,超级人脑有望在未来15-30年实现

出品:CSDN(ID:CSDNnews)作者:田玮靖 5月31日,作为国际性、权威性、专业性和前瞻性的“内行AI盛会”——智源大会开幕,会上,智源研究院发布了其最新研究成果线虫生命模型——天宝…

Aquarium华人CEO分享:机器学习在自动驾驶中落地,核心不是模型,是管道

来源:AI科技评论作者:Peter Gao编译:刘冰一编辑:陈彩娴作者 Peter Gao 是 Aquarium 公司的联合创始人和首席执行官(CEO),Aquarium 公司建立了寻找和修复深度学习数据集问题的工具。在 Aquarium …

数据科学中的 10 个重要概念和图表的含义

大数据文摘转载自数据派THU来源:DeepHub IMBA“当算法给你一条曲线时,一定要知道这个曲线的含义!”1、偏差-方差权衡这是一个总是在机器学习最重要理论中名列前茅的概念。机器学习中的几乎所有算法(包括深度学习)都努力…

Java总结:Spring5框架(1)

Spring5框架(1) 一:什么是Spring? Spring框架是由于软件开发的复杂性而创建的。Spring使用的是基本的JavaBean来完成以前只可能由EJB完成的事情。然而,Spring的用途不仅仅限于服务器端的开发。从简单性、可测试性和松耦合性角度而…

专访|79岁图灵奖获得者迈克尔·斯通布雷克谈“数字经济”与“元宇宙”

迈克尔斯通布雷克(Michael Stonebraker)被誉为“世界上最重要的数据库专家之一”,是数据库领域的第4位图灵奖得主来源:数据观撰稿:黄玉叶编辑:蒲蒲如果说硅是未来的新型石油,那么数据就好比新型…

Windows下如何搭建Gradle环境?

QUESTION:Windows下如何搭建Gradle环境? 目录 QUESTION:Windows下如何搭建Gradle环境? ANSWER: 1.开发环境 2.安装步骤 (1)下载最新的Gradle压缩包 (2)解压下载的压缩包到指定位置,比如: (3)配置环境变量 3.测试配置是否成功 ANSWER: 1.开发环境…

2029年会实现通用人工智能吗?Gary Marcus「叫板」马斯克:赌十万美元如何?

来源:AI科技评论作者:王玥编辑:陈彩娴5月30日,世界级红人埃隆马斯克(Elon Musk)发了一条推文,称:2029年是关键的一年,如果那时候我们还没有实现通用人工智能(…

Java总结:SpringBoot的使用cmd命令进行Gradle构建

QUESTION:SpringBoot的使用cmd命令进行Gradle构建 ANWSER: 目录 QUESTION:SpringBoot的使用cmd命令进行Gradle构建 ANWSER: 一:下载SpringBoot工程 二:CMD命令构建gradle 一:下载SpringBoot工程 打开:https://spring.io/pr…

Python之父Guido Van Rossum:炒作之火或将“摧毁” Web 3

来源:Yin Long Ma译者:核子可乐策划:刘燕去中心化互联网压根没戏,Web 3 开发者都是小丑:关于 Web 3,我们到底该相信什么?去中心化互联网是怎么回事?互联网源自 Web 1.0 时代&#xf…

Python:使用matplotlib进行绘图时中文变成乱码的解决

QUESTION:Python:使用matplotlib进行绘图时中文变成乱码的解决? ANSWER: 在绘图前加上下面的代码: plt.rcParams[font.sans-serif][SimHei] #用来正常显示中文标签 plt.rcParams[axes.unicode_minus]False #用来正常显示负号例子: from matplotlib import pyplot as plt pl…

两篇Nature最新研究成果:令细胞衰老的基因突变作用机制的新理论

来源:生物通研究人员发现,基因突变在人的一生中是缓慢积累的,从而导致70岁后血液形成发生巨大变化,这为衰老提供了一种新的理论。一项新的研究揭示了贯穿一生、在血液干细胞中缓慢积累的基因变化可能是导致70岁后血液生产发生巨大…

美国陆军:2045年20项新兴科技趋势报告

来源:硅谷智库 这份报告是美国陆军公布的一份长达35页的《2016-2045年新兴科技趋势报告》。它是美国在过去几年由政府机构、咨询机构、智囊团、科研机构等发表的32份科技趋势相关研究调查报告的基础上提炼形成的。通过对近700项科技趋势的综合比对分析&#xff…

利用宇宙的能力来处理数据!「物理网络」远胜深度神经网络

来源:AI科技评论作者:Charlie Wood编译:王玥编辑:岑峰轮到物理学家来揭示神经网络的本质了:他们在尝试让宇宙为我们处理数据。在一个隔音的板条箱里有着一个世界上最糟糕的神经网络。在看到数字6的图像后,这…

银行家算法总结及实现

QUESTION:银行家算法总结及实现? 目录 QUESTION:银行家算法总结及实现? ANSWER: 一:银行家算法介绍 1.1什么是银行家算法 1.2背景 1.3数据结构 1.4算法分析 二:安全状态和不安全状态 2.1概念 2.2安全性检查 三:算法实现 3.1流…