梅勒妮·米切尔 | 复杂性科学将如何颠覆我们对世界的认知?

1affbada24201302a0dee331b2eb9cd5.jpeg

来源:哲学人

作者:梅勒妮·米切尔(Melanie Mitchell)  波特兰州立大学计算机科学教授,圣塔菲研究所(Santa Fe Institute)外聘教授和科学委员会成员

1894年,物理学家、诺贝尔奖得主阿尔伯特·迈克尔逊(Albert Michelson)宣布,科学即将终结,不久之后,人类便会解开所有未知之谜。

看上去,似乎大部分的基本原理都已牢固确立,但如此大胆而劲爆的预测常常会沦为一个笑话。很快,相对论和量子力学革命就在物理学界引发了一场大地震。

渐渐地,我们还发现,那些与人类生活最密切相关的生物学、社会学、经济学、政治学等等,恰恰不受任何基本原理的管辖。

越是深究人类自身与社会的运转,我们越能发现更多意料之外的复杂性。从20世纪起,科学开始在学科之间建立起桥梁,寻找适用于复杂性本身的原理。

什么是复杂性?

“复杂性研究”的对象是复杂系统行为背后的普遍原则。在这些系统中,大量成分以非线性方式展开互动。

在这里,“非线性”是指,单去理解个体成分,是无法理解整个系统的;非线性交互导致“整体大于部分之和”。

c22564bc37bb692702e1cfd54f38fa5b.jpeg

复杂系统科学家想要理解,在蚁群、细胞、大脑、免疫系统、社会团体和经济市场中,这些集体复杂性是如何产生的?它们虽截然不同,但却似乎存在着某种相似性,这令研究者颇感兴趣。

它们全都呈现出自组织性:系统成分通过自行组织,在没有任何核心或外部“控制者”的情况下,表现出一个连贯整体的行为方式。

复杂系统能够以个体成分无法实现的复杂程度,实现信息的编码与处理。复杂系统会演化,它们以一种开放的状态,持续发生着改变,逐渐学习并适应。

这类系统无法被精确预测,也不会呈现出便于科学家理解的平衡态。

转变我们的理解

当然,所有重要的科学发现都会改变我们对自然的理解,但我认为,复杂性研究在此基础上更进了一步:它不仅有助于我们理解那些重要现象,更会改变我们看待自然和科学本身的方式。

以下就是复杂系统科学改变我们理解方式的一些例子,也许会让你意想不到。

1、简单规则能产生不可预测的复杂行为

  • 一周以后的天气预报为何不准?

  • 渔业人口的年变化数预测为何很难?

  • 股市泡沫和崩盘为何无法预知?

过去,人们普遍认为,这类现象之所以难以预测,是因为其行为的高度复杂性,且还存在不少随机因素。

786cf76b0d5a89bf28e9ecb99bc527e5.jpeg

然而,复杂系统科学显示,即便是在基本规则极为简单、且完全确定的系统中,复杂行为和不可预测性也能产生。

通常,复杂性的关键在于系统之间交互规则的逐渐迭代。至于这种迭代是否是导致天气、股市和动物种群数量存在不可预测性的唯一原因,目前尚无定论。

2、数量众多导致结果迥异

在上文中,我引用了一句老话:整体大于部分之和。物理学家菲尔·安德森(Phil Anderson)则说得更为简洁,他说,复杂性告诉我们的关键一点是,“多则异,数量多了,结果的确就会不一样。”

蚁群就是一个绝佳范例。

正如生态学家尼格尔·弗兰克斯(Nigel Franks)所言,“单独来看,一只爬行中的行军蚁非常简单,若把100只行军蚁放在一处平面上,它们会兜兜转转,永不消停,直至累死。”

若是把50万只行军蚁放在一起,整体蚁群就成了难以预测的“超级生物体”,展现出高深、乃至骇人的“集体智力”。

bd32212784eca336bebfd01b7278ac7c.jpeg

脑部神经元、免疫系统细胞、创造力和城市中的社会运动、市场经济中的行为人等等,它们都遵循类似的道理。

复杂性研究显示,当系统成分之间以恰当的方式交互时,其整体行为——系统处理信息、决策、进化与学习的能力——能够与个体成分的行为形成明显反差。

3、着眼全局的“网络式”思维方式

21世纪初,首个人类基因组测序完成,科学界获益匪浅。美国前总统比尔·克林顿曾指出,有赖于人类基因组项目,“即便不说全部,大部分人类疾病的诊断、预防和治疗都将被彻底改变。”

fc03b54d35e5ad9cd4d77ad334d910cf.jpeg

的确,许多科学家都认为,只要绘制出人类基因的完整图谱,我们就能对基因运作有一个近乎全面的了解,知道哪些基因对应哪些性状,而这将为革命性的医疗发现和靶向基因疗法指明方向。

但如今,十多年过去了,当初预言的医疗变革还没有实现,不过人类基因组计划及基因学研究倒取得了巨大进展。

  • 首先,人类基因(为蛋白质编码的DNA序列)约有2.1万个,远少于所有人的预期,仅仅与小鼠、蠕虫和芥菜的基因数差不多。

  • 其次,这些编码蛋白质的基因仅占人类DNA的2%上下。

两个谜团油然而生:

  • 如果人类基因数相对如此之少,那我们的复杂性源于何处?

  • 至于那98%的非基因DNA——过去曾被轻蔑地称为“垃圾DNA”,它们的作用又是什么?

2da161168f399bc4def12333a8e769ea.jpeg

基因学家认识到,细胞中的遗传元素就像蚁群中的蚂蚁,它们的相互作用是非线性的,并以此形成错综复杂的信息处理网络。塑造生物体的正是这样一个网络,而非一个个基因。

另外,更令人吃惊的是:所谓的“垃圾”DNA是形成这些网络的关键。信息处理网络正日渐成为生物学中的核心组织原则。曾经的“细胞信号通路”如今已被称为“细胞信息处理网络”。

癌症治疗方面的新研究并不关注个体基因,而是着眼于被很多癌症所利用的细胞信息处理网络,对其施加干扰。

人们还发现,某些类型的细菌可通过“群体感应”网络进行交流,从而对宿主发起集体攻击;这一发现也在驱使人们研究针对感染的网络式疗法。

近二十年来,一种着眼于网络的跨学科科学逐渐崭露头角,并发展出相应的洞见与研究方式,应用于从基因学到经济学的各种网络。

b78b95c9446180c7731aacd94b9961cd.jpeg

在复杂系统领域内,就变革人类对世界的认知而言,贡献最大的也许要数“网络式思维方法”了。

4、非正态才是新常态

2009年,诺贝尔经济学奖得主保罗·克鲁格曼(Paul Krugman)曾说,“几乎没有经济学家预见到这场危机,但这不是最堪忧的。更严重的是,这个领域根本无视市场经济中出现灾难性崩溃的可能性。”

至少在一定程度上,这种“无视”是源于对一种风险模型的依赖,而这种模型就是以正态分布为基础。

c4e460d32cb465d42703610c24af46b0.jpeg

图表1:金融收益或损失概率的正态分布示例图。

(a)显示了风险的正态分布。我在其中标出了出现“灾难性损失”的位置。如图所示,出现这种损失的概率几近于零,可能比你当街被雷劈的可能性还小。所以,从图表上看,你完全不用担心,除非模型本身是错的。

(b)长尾分布示例图,图中只显示了损失一侧。长尾分布所预测的灾难性损失的概率远远高于正态分布。

正态分布即我们熟知的钟形曲线。经济学家和金融业人士常常使用这种分布,为投资的收益概率和损失风险建模。

复杂性研究显示,在高度网络化的非线性系统中,更精确的风险预估模型是“长尾分布”。

若2008年的风险模型采用了长尾而非正态分布模型,人们在预测“极端事件” 时(本例中为“灾难性损失”),就会得出更高的可能性。

如今我们已知,长尾分布是复杂系统的标志性特征,随着我们对这类网络的理解日益加深,许多领域中的风险模型都需要重新审视——从疾病流行到电网故障,从金融危机到生态系统崩溃。技术专家安德烈亚斯·安东诺普洛斯(Andreas Antonopoulos)作了简洁的概括:“复杂性本身便是威胁所在。”

复杂性是一门新科学吗?

在一些领域,“复杂性这门新科学”已成为了一种流行语。但它“新”到何种程度?跟“科学”又能沾上多少边?

6033e3b77f7b47f38e196ec700e993a4.jpeg

在当代的复杂性研究之前,曾有上世纪四五十年代的控制论运动,六十年代的一般系统理论,以及近几年的系统生物学、系统工程学、系统科学等,它们与复杂系统科学有一个共同的目标:找到通用的原理,从而能够解释,系统级别的行为如何从低级别成分之间的相互作用中产生。这些不同的运动吸引了不同的社群,关注点也不尽相同。

于我而言,复杂性并非一门单一科学,而是由不同领域科学家构成的社群,他们有着共同的跨学科关注点、方式方法,以及看待科学问题的共同观念。

至于这种观念的具体构成,我们很难下定论。我觉得,这首先涉及一种观念,即想要理解复杂性,需要整合力学、信息学、统计物理学和进化论的概念。其次,计算机模型是传统科学理论和实验的重要补充。

迄今为止,复杂性并非一门统一的科学,借用美国哲学家威廉·詹姆斯(William James)的话来说,它依然只是“科学的一种希望”。而我认为,这个希望有着光明的前景。

cfc6aeb2fb5fbb7d8487e79044a4afd6.jpeg

在这个大数据时代,复杂性也许能提供“大理论”——即针对催生海量数据的复杂过程,提供一种科学的理解。从该领域过去的贡献来看,复杂性催生的“大理论”备受追捧,它将更加深刻地变革我们对世界的认知。

这值得我们翘首以盼。用剧作家汤姆·斯塔帕德(Tom Stoppard)的话说:“活在这个年代是最好的,你自以为懂得的一切,几乎都是错的。”

作者简介

梅勒妮·米切尔(Melanie Mitchell)是波特兰州立大学计算机科学教授,圣塔菲研究所(Santa Fe Institute)外聘教授和科学委员会成员。

她是研究复杂系统的前沿科学家,是人工智能、认知科学和复杂系统领域五本著作和70多篇学术论文的作者或编辑。

她的著作《复杂》(Complexity:A Guided Tour)获得2010年美国大学优等生荣誉学会科学图书奖,被Amazon.com评为2009年十大最佳科学书籍之一,并被列入英国皇家学会2010年图书奖初选名单。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

3d1b574d96cff896a5fecb98095380a7.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481754.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于三维激光点云的目标识别与跟踪研究

基于三维激光点云的目标识别与跟踪研究 人工智能技术与咨询 来源:《汽车工程》 ,作者徐国艳等 [摘要] 针对无人车环境感知中的障碍物检测问题,设计了一套基于车载激光雷达的目标识别与跟踪方法。为降低计算量&#…

北大谭营教授:推动CICC城市大脑专委会的发展建议

2022年7月16日,中国指挥与控制学会(CICC)城市大脑专业委会在北京正式成立。在成立大会上也举办了城市大脑前沿学术研讨会,新当选的专委会顾问、主任委员、副主任委员发表了最新研究成果和观点,对城市大脑的未来发展进行…

战斗机嵌入式训练系统中的智能虚拟陪练

战斗机嵌入式训练系统中的智能虚拟陪练 人工智能技术与咨询 来源:《航空学报》 ,作者陈斌等 摘 要:智能化“实虚”对抗是现代先进战斗机嵌入式训练系统的重要功能需求。自主空战决策控制技术在未来空战装备发展中扮演关键角色。将当前的功…

理论计算机科学家 Boaz Barak:深度学习并非“简单的统计”,二者距离已越来越远...

来源:AI科技评论作者:Boaz Barak编译:黄楠编辑:陈彩娴上世纪九十年代,斯坦福大学的知名生物信息学教授 Rob Tibshirani 曾拟了一个词汇表,将机器学习与统计学中的不同概念作了简单而粗暴的对应关系&#xf…

基于并行附加特征提取网络的SSD地面小目标检测模型

人工智能技术与咨询 来源:《电子学报》 ,作者李宝奇等 摘 要: 针对SSD原始附加特征提取网络(Original Additional Feature Extraction Network,OAFEN)中stride操作造成图像小目标信息丢失和串联结构产生的多尺度特征之间冗余度较大的问题&a…

细胞分裂时染色体出现了什么令人惊讶的物理性质?Nature这篇新研究详细讲解...

来源:生物通来自奥地利科学院分子生物技术研究所Gerlich小组的研究人员发现了一种分子机制,该机制在人类细胞分裂时赋予染色体特殊的物理特性,使它们能够精确忠实地传递给后代。研究结果发表在《自然》杂志上。细胞分裂早期有丝分裂染色体(紫…

人人皆可免费造芯?谷歌开源芯片计划已释放90nm、130nm和180nm工艺设计套件

来源:AI前线整理:钰莹这是世界首个开源 PDK,目前已经提供 130nm、90nm 以及 180nm 的工艺设计套件,这些数字听起来没有 3nm 那么让人兴奋,但在物联网的众多硬件设计中被广泛应用。谷歌联手 GlobalFoundries&#xff0c…

面向关系数据库的智能索引调优方法

面向关系数据库的智能索引调优方法 人工智能技术与咨询 来源:《软件学报》 ,作者邱 涛等 摘 要:数据库索引是关系数据库系统实现快速查询的有效方式之一.智能索引调优技术可以有效地对数据库实例进行索引调节,从而保持数据库高效的查询性能.现有的方法…

中国电信张东:数据治理与城市感知网的建设与运营

2022年7月16日,中国指挥与控制学会(CICC)城市大脑专业委会在北京正式成立。在成立大会上也举办了城市大脑前沿学术研讨会,新当选的专委会顾问、主任委员、副主任委员发表了最新研究成果和观点,对城市大脑的未来发展进行…

【前沿技术】270多起车祸,特斯拉Autopilot和自动驾驶被诉虚假宣传

来源:智能研究院「虚假的自动驾驶」(fake self driving),一名网友这样评论道。在自动驾驶领域,特斯拉依靠其 Autopilot 成为业界追赶的标杆。但有时,特斯拉在产品和功能宣传时并不是那么地实事求是。近日&a…

面向区块链的高效物化视图维护和可信查询

面向区块链的高效物化视图维护和可信查询 人工智能技术与咨询 来源:《软件学报》 ,作者蔡 磊等 摘 要:区块链具有去中心化、不可篡改和可追溯等特性,可应用于金融、物流等诸多行业.由于所有交易数据按照交易时间顺序存储在各个区块,相同类型的交易数据…

合力远洋候国军:Web3.0的机遇与挑战

2022年8月6日, 中国指挥与控制学会CICC)“百名专家、百场讲座”第九讲邀请到合力远洋候国军做了主题为Web3.0的机遇与挑战“”的学术讲座。本次讲座也是CICC城市大脑专委会组织的第二期城市大脑系列学术报告。在报告中,候国军师深入解析了什么是Web3.0以…

时间约束的实体解析中记录对排序研究

时间约束的实体解析中记录对排序研究 人工智能技术与咨询 来源:《软件学报》 ,作者孙琛琛等 摘 要:实体解析是数据集成和数据清洗的重要组成部分,也是大数据分析与挖掘的必要预处理步骤.传统的批处理式实体解析的整体运行时间较长,无法满足当前(近似)…

中国自动驾驶政策全球领跑,两城率先开展全无人商业运营

来源:环球时报日前重庆、武汉两地政府部门率先发布自动驾驶全无人商业化试点政策,并向百度发放全国首批无人化示范运营资格,允许车内无安全员的自动驾驶车辆在社会道路上开展商业化服务。此次政策落地,标志着重庆、武汉两地居民将…

基于时空相关属性模型的公交到站时间预测算法

基于时空相关属性模型的公交到站时间预测算法 人工智能技术与咨询 来源:《软件学报》 ,作者赖永炫等 摘 要:公交车辆到站时间的预测是公交调度辅助决策系统的重要依据,可帮助调度员及时发现晚点车辆,并做出合理的调度决策.然而,公交到站时间受交通拥堵…

眼见不一定为实,你的大脑是怎么被骗的?

来源:中科院物理所作者:Meisa Salaita翻译:Nuor审校:zhenni编辑:藏痴原文链接:How Optical Illusions Work1870年,卢迪玛赫尔曼(Ludimar Hermann)首次发现了赫尔曼栅格错…

基于迁移深度学习的雷达信号分选识别

基于迁移深度学习的雷达信号分选识别 人工智能技术与咨询 来源:《软件学报》 ,作者王功明等 摘要: 针对当前雷达信号分选识别算法普遍存在的低信噪比下识别能力差、特征参数提取困难、分类器模型参数复杂等问题,提出了一种基于时频分析、深…

量子计算机即将问世。这对网络安全意味着什么?

来源:IEEE电气电子工程师主流量子计算可能还有几十年的时间,但其破解加密的能力意味着研究人员现在正在研究如何提高量子时代的安全性。现代计算机从根本上改变了人们的日常生活,且每天都在变得更加强大。你现在正在用来阅读这篇文章的智能手…

Demis Hassabis:AI 的强大,超乎我们的想象

有人认为 AI 已经穷途末路,但一些绝顶聪明的人还在继续求索。来源:AI科技评论整理:黄楠、王玥编辑:陈彩娴近日,DeepMind 的创始人 Demis Hassabis 作客 Lex Fridman 的播客节目,谈了许多有趣的观点。在访谈…

某型无人机群的监视覆盖任务航路规划

某型无人机群的监视覆盖任务航路规划 人工智能技术与咨询 来源:《计算机科学与应用》 ,作者冷雄晖等 关键词: 无人机群;监视覆盖航路规划;遗传算法;人工势场法;UAV Group; Surveillance Cove…