论文浅尝 | 面向时序知识图谱推理的循环事件网络

论文笔记整理:谭亦鸣,东南大学博士生,研究方向为知识库问答。


640?wx_fmt=png

来源:arXiv (short version accepted at ICLR 2019Workshop on Representation Learning on Graphs and Manifolds)

链接:https://arxiv.org/abs/1904.05530

 

本文提出了一种建模时序、多关系、图结构数据的神经网络方法,称为循环事件网络(RE-NET),该模型由RNN事件序列编码器和近邻聚合模型组成。其中,近邻聚合模型将每一时刻主实体通过关系连接的邻居(一跳或两跳)进行信息聚合,与主实体(Subject)、关系(Relation)的向量表示一同作为RNN的输入,从而实现数据建模,用于预测某时刻主体事件s在关系r上对应的客体事件o,(假定图谱四元组表示为(s, r, o, t),任务目标是预测(s, r, ?, t)或(?, r, o, t)中的?)。

 

思路

本文方法的关键思路包括:

1. 时序图谱可以被看作具有多个相互关系的序列;

2. 实体间的多个相互关系可能发生在同一时刻;

3. 时序邻居关系之间存在强依赖;

4. 多关系情况下,当前邻居可以帮助预测未来(实体之间的)相互关系。

 

 

方法

框架描述

640?wx_fmt=png

图1(左)描述事件图形式构成为:(Subject,Relation,Object,Time),其中Subject与Object为事件的主客体,Relation则代表事件本身,事件具有时间信息;

图1(右)是事件图embedding和Object事件预测的流程框架,该模型的整体框架由事件序列编码器(event sequence encoder)与近邻聚合模型(neighborhood aggregation module)构成。

对于某一主体实体es,假定我们需要推断它在t时刻的事件客体是什么,过程描述如下:

1.    对于历史时刻(图中为t-1, t-2, t-3),将各时刻es包含的邻居实体聚合为x,与es及关系er一起作为RNN的输入

2.    将RNN末端(即时间t)得到的隐状态取出,与es和关系er融合给出t时刻e和er对应的客体o的概率分布

3.    完成t时刻客体o的预测

 

事件序列编码器(event sequence encoder)

RE-NET的目标是表示时序图谱,假定640?wx_fmt=png表示t时刻发生的事件集合,当我们要预测这个集合时,显然需要将t时刻之前的历史信息作为参照,得到一个条件概率表示640?wx_fmt=png,那么我们要预测的客体o则可以通过以下式子得到:

640?wx_fmt=png

且可以改写为:

640?wx_fmt=png

由此可以得到事件序列编码函数形如:

640?wx_fmt=png

函数f的参数作为RNN编码器的输入。

 

近邻聚合模型(neighborhood aggregation module)

作者列举了四种可选近邻聚合策略:

Mean Aggregator取与主体s相关的客体o的平均作为聚合结果,并不考虑不同的o具有的重要性;

Attentive Aggregator对于主客体之间添加注意力,反映其之间的相关程度

Pooling Aggregator对主体和邻居之间做卷积,可表示为:

640?wx_fmt=png

RGCN Aggregator使用多层神经网络进行邻居聚合,考虑两跳邻居,公式形如:

640?wx_fmt=png

下图是对两跳邻居聚合的示意图:

640?wx_fmt=png

 

实验

数据集

本文实验使用到了四个数据集:包含两个基于事件的时序知识图谱(Integrated Crisis Early Warning System (ICEWS18),Global Database of Events, Language, and Tone(GDELT))及两个包含时序信息的知识图谱(WIKI, YAGO)

每个数据集依据时间戳,均被划分为80%训练集,10%验证集,10%测试集;即训练集的时序排在验证集之前,验证集在测试集之前。

评价策略使用了Mean Reciprocal Ranks和Hits@1/3/10两种

 

实验结果

    本文参照的Baseline被分为统计方法(TransE, DisMult,ComplEx, R-GCN, ConvE)和时序推理方法(Know-Evolve, TA-TransE/DistMult,HyTE, TTransE)

 

实验结果如下表所示:

640?wx_fmt=png

640?wx_fmt=png

 


OpenKG

开放知识图谱(简称 OpenKG)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

点击阅读原文,进入 OpenKG 博客。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/479563.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android实现炫酷的星空变幻效果

二话不说,先上效果图: 这个图是什么意思呢,有没有看到一直在变颜色啊,有没有很像星云变幻呢,有没有很炫,快来看看怎么实现的吧! 这是我们要被处理的原图,实现方式就是通过不断的改变…

美团配送数据治理实践

大数据时代的到来,让越来越多的企业看到了数据资产的价值。将数据视为企业的重要资产,已经成为业界的一种共识,企业也在快速探索应用场景和商业模式,并开始建设技术平台。 但这里要特别强调一下,如果在大数据“拼图”中…

这可能是你近 2 年发论文最好机会!

几年前如果熟练使用TensorFlow,同时掌握基本的AI算法就可以很容易找到一份高薪的工作,但现在不一样了,AI岗位的要求越来越高,对知识的深度也提出了更高的要求。如果现在一个面试官让你从零推导SVM的Dual、从零实现CRF、推导LDA、设…

LeetCode 671. 二叉树中第二小的节点

文章目录1. 题目信息2. 解题2.1 递归查找2.2 改循环1. 题目信息 给定一个非空特殊的二叉树,每个节点都是正数,并且每个节点的子节点数量只能为 2 或 0。如果一个节点有两个子节点的话,那么这个节点的值不大于它的子节点的值。 给出这样的一…

论文浅尝 | 多标签分类中的元学习

论文笔记整理:叶群,浙江大学计算机学院,知识图谱、NLP方向。会议:EMNLP 2019链接:https://arxiv.org/abs/1909.04176Abstract这篇论文首次在多标签分类问题中提出了 meta-learning 的方法,学习weight polic…

从源码角度分析Android系统的异常捕获机制是如何运行的

我们在开发的时候经常会遇到各种异常,当程序遇到异常,便会将异常信息抛到LogCat中,那这个过程是怎么实现的呢? 我们以一个例子开始: import android.app.Activity; import android.os.Bundle;public class MainActivit…

法律规则鬼畜图解||全面易懂的旅游投诉赔偿标准

法律规则鬼畜图解||全面易懂的旅游投诉赔偿标准https://zhuanlan.zhihu.com/p/82878902 执笔人:张宗保律师(联系方式:知乎私信)执业地域:深圳市执业方向:民商事诉讼一、赔偿标准的适用前提只有在旅游者和旅…

美团技术十年:让我们感动的那些人那些事

时光荏苒,美团十岁了,美团技术团队也走过了十个春秋。 2010年3月4日美团网上线的时候,整个公司总共十来人,在一套三居室的民房里起步。其中技术团队只有5个人,现在有4位还在美团。 今天,美团是中国市值第三…

LeetCode 113. 路径总和 II(回溯)

文章目录1. 题目信息2. 解题1. 题目信息 给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径。 说明: 叶子节点是指没有子节点的节点。 示例: 给定如下二叉树,以及目标和 sum 22,5/ \4 8/ / \11 1…

开放开源 | DeepKE:基于深度学习的开源中文关系抽取工具

本文转载自公众号:浙大 KG。作者:余海阳机构:浙江大学代码地址: https://github.com/zjunlp/deepkeOpenKG 发布地址: http://openkg.cn/tool/deepke一、系统简介关系抽取是知识图谱构建的基本子任务之一,它主要面向非结构化的文本…

微前端在美团外卖的实践

背景 微前端是一种利用微件拆分来达到工程拆分治理的方案,可以解决工程膨胀、开发维护困难等问题。随着前端业务场景越来越复杂,微前端这个概念最近被提起得越来越多,业界也有很多团队开始探索实践并在业务中进行了落地。可以看到&#xff0c…

论文浅尝 | Meta Relational Learning: 基于元关系学习的少样本知识图谱推理

本文转载自公众号:浙大KG。 笔记整理:陈名杨,浙江大学在读博士发表会议:EMNLP-2019论文链接:https://arxiv.org/abs/1909.01515开源代码&…

测试集没标签,可以拿来测模型吗?

文:维建编:白鹡鸰背景正常情况下,我们可以用一个带标签的数据集来测试分类器的表现(称之为测试集)。然而,现实中,因为种种因素的制约(标注成本高、标注难度大等 Google:穷…

从0到1 | 手把手教你如何使用哈工大NLP工具——PyLTP!

原文链接:https://flashgene.com/archives/46041.html 本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢. 作者 | 杨秀璋 来源 | CSDN 博客(CSDN id:Eastmount) 【导语】此文是作者基于 Python 构…

美团智能配送系统的运筹优化实战

深入各个产业已经成为互联网目前的主攻方向,线上和线下存在大量复杂的业务约束和多种多样的决策变量,为运筹优化技术提供了用武之地。作为美团智能配送系统最核心的技术之一,运筹优化是如何在美团各种业务场景中进行落地的呢?本文…

Android如何给无法更改继承关系的Activity更换ActionBar(setContentView方法实战)

前言: 通常我们有时候会直接使用ADT工具直接新建一个Activity页,而这个Activity我们又无法更改它的父类,那遇到这种情况该如何处理呢?其实很简单,好,看如何来解决这个问题: 先来看看这个问题出…

论文浅尝 | 基于属性embeddings的跨图谱实体对齐

论文笔记整理:谭亦鸣,东南大学博士生,研究方向为知识库问答。来源:AAAI 2019链接:https://aaai.org/ojs/index.php/AAAI/article/view/3798跨图谱实体对齐任务的目标是从两个不同知识图谱中找出同一 real-world 实体&a…

LeetCode 771. 宝石与石头(哈希)

文章目录1. 题目信息2. 解题1. 题目信息 给定字符串J 代表石头中宝石的类型,和字符串 S代表你拥有的石头。 S 中每个字符代表了一种你拥有的石头的类型,你想知道你拥有的石头中有多少是宝石。 J 中的字母不重复,J 和 S中的所有字符都是字母…

开启NLP新时代的BERT模型,真的好上手吗?

都说BERT模型开启了NLP的新时代,更有“BERT在手,天下我有”的传说,它解决了很多NLP的难题:1、BERT让低成本地训练超大规模语料成为可能;2、BERT能够联合神经网络所有层中的上下文来进行训练,实现更精准的文…

YOLO系列:YOLOv1,YOLOv2,YOLOv3,YOLOv4,YOLOv5简介

原文链接: https://zhuanlan.zhihu.com/p/136382095 YOLO系列:YOLOv1,YOLOv2,YOLOv3,YOLOv4,YOLOv5简介YOLO系列是基于深度学习的回归方法。RCNN, Fast-RCNN,Faster-RCNN是基于深度学习的分类方法。YOLO官网:https://g…