企业电子商务网站建设规划/windows优化大师官方下载

企业电子商务网站建设规划,windows优化大师官方下载,汉中疫情防控最新消息,工商信息公示系统查询Leaf是美团基础研发平台推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”Leaf具备高可靠、低延迟、全局唯一等特点。目前已经广泛应用于美团金融、美团外卖、美团酒旅等多个…

Leaf是美团基础研发平台推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”Leaf具备高可靠、低延迟、全局唯一等特点。目前已经广泛应用于美团金融、美团外卖、美团酒旅等多个部门。具体的技术细节,可参考此前美团技术博客的一篇文章:《Leaf美团分布式ID生成服务》。近日,Leaf项目已经在Github上开源:https://github.com/Meituan-Dianping/Leaf,希望能和更多的技术同行一起交流、共建。

Leaf特性

Leaf在设计之初就秉承着几点要求:

  1. 全局唯一,绝对不会出现重复的ID,且ID整体趋势递增。
  2. 高可用,服务完全基于分布式架构,即使MySQL宕机,也能容忍一段时间的数据库不可用。
  3. 高并发低延时,在CentOS 4C8G的虚拟机上,远程调用QPS可达5W+,TP99在1ms内。
  4. 接入简单,直接通过公司RPC服务或者HTTP调用即可接入。

Leaf诞生

Leaf第一个版本采用了预分发的方式生成ID,即可以在DB之上挂N个Server,每个Server启动时,都会去DB拿固定长度的ID List。这样就做到了完全基于分布式的架构,同时因为ID是由内存分发,所以也可以做到很高效。接下来是数据持久化问题,Leaf每次去DB拿固定长度的ID List,然后把最大的ID持久化下来,也就是并非每个ID都做持久化,仅仅持久化一批ID中最大的那一个。这个方式有点像游戏里的定期存档功能,只不过存档的是未来某个时间下发给用户的ID,这样极大地减轻了DB持久化的压力。

整个服务的具体处理过程如下:

  • Leaf Server 1:从DB加载号段[1,1000]。
  • Leaf Server 2:从DB加载号段[1001,2000]。
  • Leaf Server 3:从DB加载号段[2001,3000]。

用户通过Round-robin的方式调用Leaf Server的各个服务,所以某一个Client获取到的ID序列可能是:1,1001,2001,2,1002,2002……也可能是:1,2,1001,2001,2002,2003,3,4……当某个Leaf Server号段用完之后,下一次请求就会从DB中加载新的号段,这样保证了每次加载的号段是递增的。

Leaf数据库中的号段表格式如下:

+-------------+--------------+------+-----+-------------------+-----------------------------+
| Field       | Type         | Null | Key | Default           | Extra                       |
+-------------+--------------+------+-----+-------------------+-----------------------------+
| biz_tag     | varchar(128) | NO   | PRI |                   |                             |
| max_id      | bigint(20)   | NO   |     | 1                 |                             |
| step        | int(11)      | NO   |     | NULL              |                             |
| desc        | varchar(256) | YES  |     | NULL              |                             |
| update_time | timestamp    | NO   |     | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP |
+-------------+--------------+------+-----+-------------------+-----------------------------+

Leaf Server加载号段的SQL语句如下:

Begin
UPDATE table SET max_id=max_id+step WHERE biz_tag=xxx
SELECT tag, max_id, step FROM table WHERE biz_tag=xxx
Commit

整体上,V1版本实现比较简单,主要是为了尽快解决业务层DB压力的问题,而快速迭代出的一个版本。因而在生产环境中,也发现了些问题。比如:

  1. 在更新DB的时候会出现耗时尖刺,系统最大耗时取决于更新DB号段的时间。
  2. 当更新DB号段的时候,如果DB宕机或者发生主从切换,会导致一段时间的服务不可用。

Leaf双Buffer优化

为了解决这两个问题,Leaf采用了异步更新的策略,同时通过双Buffer的方式,保证无论何时DB出现问题,都能有一个Buffer的号段可以正常对外提供服务,只要DB在一个Buffer的下发的周期内恢复,就不会影响整个Leaf的可用性。

这个版本代码在线上稳定运行了半年左右,Leaf又遇到了新的问题:

  1. 号段长度始终是固定的,假如Leaf本来能在DB不可用的情况下,维持10分钟正常工作,那么如果流量增加10倍就只能维持1分钟正常工作了。
  2. 号段长度设置的过长,导致缓存中的号段迟迟消耗不完,进而导致更新DB的新号段与前一次下发的号段ID跨度过大。

Leaf动态调整Step

假设服务QPS为Q,号段长度为L,号段更新周期为T,那么Q * T = L。最开始L长度是固定的,导致随着Q的增长,T会越来越小。但是Leaf本质的需求是希望T是固定的。那么如果L可以和Q正相关的话,T就可以趋近一个定值了。所以Leaf每次更新号段的时候,根据上一次更新号段的周期T和号段长度step,来决定下一次的号段长度nextStep:

  • T < 15min,nextStep = step * 2
  • 15min < T < 30min,nextStep = step
  • T > 30min,nextStep = step / 2

至此,满足了号段消耗稳定趋于某个时间区间的需求。当然,面对瞬时流量几十、几百倍的暴增,该种方案仍不能满足可以容忍数据库在一段时间不可用、系统仍能稳定运行的需求。因为本质上来讲,Leaf虽然在DB层做了些容错方案,但是号段方式的ID下发,最终还是需要强依赖DB。

MySQL高可用

在MySQL这一层,Leaf目前采取了半同步的方式同步数据,通过公司DB中间件Zebra加MHA做的主从切换。未来追求完全的强一致,会考虑切换到MySQL Group Replication。

现阶段由于公司数据库强一致的特性还在演进中,Leaf采用了一个临时方案来保证机房断网场景下的数据一致性:

  • 多机房部署数据库,每个机房一个实例,保证都是跨机房同步数据。
  • 半同步超时时间设置到无限大,防止半同步方式退化为异步复制。

Leaf监控

针对服务自身的监控,Leaf提供了Web层的内存数据映射界面,可以实时看到所有号段的下发状态。比如每个号段双buffer的使用情况,当前ID下发到了哪个位置等信息都可以在Web界面上查看。

Leaf Snowflake

Snowflake,Twitter开源的一种分布式ID生成算法。基于64位数实现,下图为Snowflake算法的ID构成图。

  • 第1位置为0。
  • 第2-42位是相对时间戳,通过当前时间戳减去一个固定的历史时间戳生成。
  • 第43-52位是机器号workerID,每个Server的机器ID不同。
  • 第53-64位是自增ID。

这样通过时间+机器号+自增ID的组合来实现了完全分布式的ID下发。

在这里,Leaf提供了Java版本的实现,同时对Zookeeper生成机器号做了弱依赖处理,即使Zookeeper有问题,也不会影响服务。Leaf在第一次从Zookeeper拿取workerID后,会在本机文件系统上缓存一个workerID文件。即使ZooKeeper出现问题,同时恰好机器也在重启,也能保证服务的正常运行。这样做到了对第三方组件的弱依赖,一定程度上提高了SLA。

未来规划

  • 号段加载优化:Leaf目前重启后的第一次请求还是会同步加载MySQL,之所以这么做而非服务初始化加载号段的原因,主要是MySQL中的Leaf Key并非一定都被这个Leaf服务节点所加载,如果每个Leaf节点都在初始化加载所有的Leaf Key会导致号段的大量浪费。因此,未来会在Leaf服务Shutdown时,备份这个服务节点近一天使用过的Leaf Key列表,这样重启后会预先从MySQL加载Key List中的号段。
  • 单调递增:简易的方式,是只要保证同一时间、同一个Leaf Key都从一个Leaf服务节点获取ID,即可保证递增。需要注意的问题是Leaf服务节点切换时,旧Leaf 服务用过的号段需要废弃。路由逻辑,可采用主备的模型或者每个Leaf Key 配置路由表的方式来实现。

关于开源

分布式ID生成的方案有很多种,Leaf开源版本提供了两种ID的生成方式:

  • 号段模式:低位趋势增长,较少的ID号段浪费,能够容忍MySQL的短时间不可用。
  • Snowflake模式:完全分布式,ID有语义。

读者可以按需选择适合自身业务场景的ID下发方式。希望美团的方案能给予大家一些帮助,同时也希望各位能够一起交流、共建。

Leaf项目Github地址:https://github.com/Meituan-Dianping/Leaf 。

如有任何疑问和问题,欢迎提交至Github issues。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/479315.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 658. 找到 K 个最接近的元素(二分查找)

1. 题目 给定一个排序好的数组&#xff0c;两个整数 k 和 x&#xff0c;从数组中找到最靠近 x&#xff08;两数之差最小&#xff09;的 k 个数。返回的结果必须要是按升序排好的。如果有两个数与 x 的差值一样&#xff0c;优先选择数值较小的那个数。 示例 1:输入: [1,2,3,4,…

负数的开方到底等于多少?

文&#xff1a;杨树森知乎编&#xff1a;小鹿鹿lulu负数的开方到底等于多少?举个栗子拿出小本本, 一通变换,得到:Really? 且看下面详解乘方来源于乘法&#xff0c;我们可以归纳地定义&#xff0c;设 是一个域&#xff0c;, 则上述的域 可以是有理数域 , 实数域, 或复数域 前两…

综述 | 知识图谱实体链接:一份“由浅入深”的综述

本文转载自公众号&#xff1a;PaperWeekly。 作者丨Nicolas单位丨追一科技 AI Lab 研究员研究方向丨信息抽取、机器阅读理解本文介绍实体链接&#xff08;Entity Linking&#xff09;这一技术方向&#xff0…

Android官方开发文档Training系列课程中文版:管理Activity的生命周期之停止和重启Activity

原文地址 : http://android.xsoftlab.net/training/basics/activity-lifecycle/stopping.html#Start 在activity的生命周期内&#xff0c;适当的停止和重新启动activity是一个非常重要的过程&#xff0c;它可以确保用户能感觉到APP一直是存活状态&#xff0c;并且不会丢失他们…

selenium.common.exceptions.WebDriverException: Message: ‘chromedriver’解决

selenium.common.exceptions.WebDriverException: Message: chromedriver’解决&#xff1a; https://blog.csdn.net/weixin_44318830/article/details/103339273 今天在做selenium测试的时候,可能是很久没用了,直接报了这个异常! 相信很多第一次学习selenium的同学们也对这个异…

活动 Web 页面人机识别验证的探索与实践

在电商行业&#xff0c;线上的营销活动特别多。在移动互联网时代&#xff0c;一般为了活动的快速上线和内容的即时更新&#xff0c;大部分的业务场景仍然通过 Web 页面来承载。但由于 Web 页面天生“环境透明”&#xff0c;相较于移动客户端页面在安全性上存在更大的挑战。本文…

利用python提取网站曲线图数据

文章目录数据1数据2数据1 数据目标&#xff1a;曲线图 F12&#xff0c;如图位置输入JSON.stringify(dataSeries.dataPoints) copy&#xff0c;粘贴到data.txt 数据是一个列表&#xff0c;里面是多个字典 编写程序如下&#xff1a; import json as js datafile data1.txt…

论文浅尝 | HEAD-QA: 一个面向复杂推理的医疗保健数据集

论文笔记整理&#xff1a;谭亦鸣&#xff0c;东南大学博士生&#xff0c;研究方向为知识库问答。来源&#xff1a;ACL2019本文构建了一个面向复杂推理任务的多选问答数据集 HEAD-QA&#xff0c;该数据集中的问题来自一个西班牙的医疗保健专业测试&#xff0c;对于具备该方向专业…

Poor Man's BERT: 更小更快的Transformer模型

文 | sliderSun源 | 知乎NLP模型的大小不断增加&#xff0c;随之而来的是可用性降低&#xff0c;TinyBERT&#xff0c;MobileBERT&#xff0c;和DistilBERT都提出了一个独特的知识蒸馏框架&#xff0c;其共同目标是在保持性能的同时减小模型大小。尽管所有这些方法都以各自的方…

LeetCode 429. N叉树的层序遍历(queue)

1. 题目 返回其层序遍历:[[1],[3,2,4],[5,6] ]2. 解题 queue队列解题 /* // Definition for a Node. class Node { public:int val;vector<Node*> children;Node() {}Node(int _val, vector<Node*> _children) {val _val;children _children;} }; */ class Solu…

Android官方开发文档Training系列课程中文版:管理Activity的生命周期之Activity的重建

原文地址&#xff1a;http://android.xsoftlab.net/training/basics/activity-lifecycle/recreating.html#RestoreState 有这么几个关于activity通过正常渠道销毁的场景&#xff0c;比如用户按下了返回按钮&#xff0c;又或者是在activity中调用了终止信号finish。系统可能也会…

Java动态追踪技术探究

引子 在遥远的希艾斯星球爪哇国塞沃城中&#xff0c;两名年轻的程序员正在为一件事情苦恼&#xff0c;程序出问题了&#xff0c;一时看不出问题出在哪里&#xff0c;于是有了以下对话&#xff1a; “Debug一下吧。” “线上机器&#xff0c;没开Debug端口。” “看日志&#xf…

论文浅尝 | 从树结构的长短期记忆网络改进语义表示

论文笔记整理&#xff1a;窦春柳&#xff0c;天津大学硕士&#xff0c;方向&#xff1a;自然语言处理链接&#xff1a;https://arxiv.org/pdf/1503.00075.pdf动机由于长短期记忆网络&#xff08;LSTM&#xff09;这种具有复杂单元的循环神经网络具有良好的表示序列信息的能力&a…

详解NLP技术中的:预训练模型、图神经网络、模型压缩、知识图谱

NLP近几年非常火&#xff0c;且发展特别快。像BERT、GPT-3、图神经网络、知识图谱等技术应运而生。我们正处在信息爆炸的时代、面对每天铺天盖地的网络资源和论文、很多时候我们面临的问题并不是缺资源&#xff0c;而是找准资源并高效学习。但很多时候你会发现&#xff0c;花费…

根因分析初探:一种报警聚类算法在业务系统的落地实施

背景 众所周知&#xff0c;日志是记录应用程序运行状态的一种重要工具&#xff0c;在业务服务中&#xff0c;日志更是十分重要。通常情况下&#xff0c;日志主要是记录关键执行点、程序执行错误时的现场信息等。系统出现故障时&#xff0c;运维人员一般先查看错误日志&#xff…

论文浅尝 | BAG:面向多跳推理问答得双向 Attention 实体图卷积网络

论文笔记整理&#xff1a;谭亦鸣&#xff0c;东南大学博士生&#xff0c;研究兴趣&#xff1a;知识图谱问答来源&#xff1a;NAACL 2019链接&#xff1a;https://www.aclweb.org/anthology/N19-1032/实现多跳推理问答需要模型能够充分理解文本和 query 之间的关系&#xff0c;本…

Android官方开发文档Training系列课程中文版:使用Fragment构建动态UI之构建灵活的UI

原文地址&#xff1a;http://android.xsoftlab.net/training/basics/fragments/fragment-ui.html 当设计应用程序时需要支持尺寸较大的宽屏设备时&#xff0c;可以基于可用的屏幕空间在不同的布局中配置并重新使用fragment来提升用户体验。 举个例子&#xff0c;手持设备在同…

LeetCode 669. 修剪二叉搜索树

1. 题目 给定一个二叉搜索树&#xff0c;同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树&#xff0c;使得所有节点的值在[L, R]中 (R>L) 。你可能需要改变树的根节点&#xff0c;所以结果应当返回修剪好的二叉搜索树的新的根节点。 来源&#xff1a;力扣&#xff08…

Pytorch翻车记录:单卡改多卡踩坑记!

文 | 哟林小平知乎先说明一下背景&#xff0c;目前正在魔改以下这篇论文的代码&#xff1a;https://github.com/QipengGuo/GraphWriter-DGLgithub.com由于每次完成实验需要5个小时&#xff08;baseline&#xff09;&#xff0c;自己的模型需要更久&#xff08;2倍&#xff09;&…

使用docker部署flask项目

前言 本次部署是把2个项目、mysql、redis、uwsgi封装在一个容器中&#xff0c;ngnix封装在一个容器中 实际应用中最好是&#xff1a; 项目和uwsgi封装在一个容器中mysql单独封装&#xff0c;可能还要读写分离&#xff0c;主从同步等redis单独封装&#xff0c;可能还要读写分离&…