Spring Boot引起的“堆外内存泄漏”排查及经验总结

背景

为了更好地实现对项目的管理,我们将组内一个项目迁移到MDP框架(基于Spring Boot),随后我们就发现系统会频繁报出Swap区域使用量过高的异常。笔者被叫去帮忙查看原因,发现配置了4G堆内内存,但是实际使用的物理内存竟然高达7G,确实不正常。JVM参数配置是“-XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M -XX:+AlwaysPreTouch -XX:ReservedCodeCacheSize=128m -XX:InitialCodeCacheSize=128m, -Xss512k -Xmx4g -Xms4g,-XX:+UseG1GC -XX:G1HeapRegionSize=4M”,实际使用的物理内存如下图所示:

top命令显示的内存情况

排查过程

1. 使用Java层面的工具定位内存区域(堆内内存、Code区域或者使用unsafe.allocateMemory和DirectByteBuffer申请的堆外内存)

笔者在项目中添加-XX:NativeMemoryTracking=detailJVM参数重启项目,使用命令jcmd pid VM.native_memory detail查看到的内存分布如下:

jcmd显示的内存情况

发现命令显示的committed的内存小于物理内存,因为jcmd命令显示的内存包含堆内内存、Code区域、通过unsafe.allocateMemory和DirectByteBuffer申请的内存,但是不包含其他Native Code(C代码)申请的堆外内存。所以猜测是使用Native Code申请内存所导致的问题。

为了防止误判,笔者使用了pmap查看内存分布,发现大量的64M的地址;而这些地址空间不在jcmd命令所给出的地址空间里面,基本上就断定就是这些64M的内存所导致。

pmap显示的内存情况

2. 使用系统层面的工具定位堆外内存

因为笔者已经基本上确定是Native Code所引起,而Java层面的工具不便于排查此类问题,只能使用系统层面的工具去定位问题。

首先,使用了gperftools去定位问题

gperftools的使用方法可以参考gperftools,gperftools的监控如下:

gperftools监控

从上图可以看出:使用malloc申请的的内存最高到3G之后就释放了,之后始终维持在700M-800M。笔者第一反应是:难道Native Code中没有使用malloc申请,直接使用mmap/brk申请的?(gperftools原理就使用动态链接的方式替换了操作系统默认的内存分配器(glibc)。)

然后,使用strace去追踪系统调用

因为使用gperftools没有追踪到这些内存,于是直接使用命令“strace -f -e”brk,mmap,munmap” -p pid”追踪向OS申请内存请求,但是并没有发现有可疑内存申请。strace监控如下图所示:

strace监控

接着,使用GDB去dump可疑内存

因为使用strace没有追踪到可疑内存申请;于是想着看看内存中的情况。就是直接使用命令gdp -pid pid进入GDB之后,然后使用命令dump memory mem.bin startAddress endAddressdump内存,其中startAddress和endAddress可以从/proc/pid/smaps中查找。然后使用strings mem.bin查看dump的内容,如下:

gperftools监控

从内容上来看,像是解压后的JAR包信息。读取JAR包信息应该是在项目启动的时候,那么在项目启动之后使用strace作用就不是很大了。所以应该在项目启动的时候使用strace,而不是启动完成之后。

再次,项目启动时使用strace去追踪系统调用

项目启动使用strace追踪系统调用,发现确实申请了很多64M的内存空间,截图如下:

strace监控

使用该mmap申请的地址空间在pmap对应如下:

strace申请内容对应的pmap地址空间

最后,使用jstack去查看对应的线程

因为strace命令中已经显示申请内存的线程ID。直接使用命令jstack pid去查看线程栈,找到对应的线程栈(注意10进制和16进制转换)如下:

strace申请空间的线程栈

这里基本上就可以看出问题来了:MCC(美团统一配置中心)使用了Reflections进行扫包,底层使用了Spring Boot去加载JAR。因为解压JAR使用Inflater类,需要用到堆外内存,然后使用Btrace去追踪这个类,栈如下:

btrace追踪栈

然后查看使用MCC的地方,发现没有配置扫包路径,默认是扫描所有的包。于是修改代码,配置扫包路径,发布上线后内存问题解决。

3. 为什么堆外内存没有释放掉呢?

虽然问题已经解决了,但是有几个疑问:

  • 为什么使用旧的框架没有问题?
  • 为什么堆外内存没有释放?
  • 为什么内存大小都是64M,JAR大小不可能这么大,而且都是一样大?
  • 为什么gperftools最终显示使用的的内存大小是700M左右,解压包真的没有使用malloc申请内存吗?

带着疑问,笔者直接看了一下Spring Boot Loader那一块的源码。发现Spring Boot对Java JDK的InflaterInputStream进行了包装并且使用了Inflater,而Inflater本身用于解压JAR包的需要用到堆外内存。而包装之后的类ZipInflaterInputStream没有释放Inflater持有的堆外内存。于是笔者以为找到了原因,立马向Spring Boot社区反馈了这个bug。但是反馈之后,笔者就发现Inflater这个对象本身实现了finalize方法,在这个方法中有调用释放堆外内存的逻辑。也就是说Spring Boot依赖于GC释放堆外内存。

笔者使用jmap查看堆内对象时,发现已经基本上没有Inflater这个对象了。于是就怀疑GC的时候,没有调用finalize。带着这样的怀疑,笔者把Inflater进行包装在Spring Boot Loader里面替换成自己包装的Inflater,在finalize进行打点监控,结果finalize方法确实被调用了。于是笔者又去看了Inflater对应的C代码,发现初始化的使用了malloc申请内存,end的时候也调用了free去释放内存。

此刻,笔者只能怀疑free的时候没有真正释放内存,便把Spring Boot包装的InflaterInputStream替换成Java JDK自带的,发现替换之后,内存问题也得以解决了。

这时,再返过来看gperftools的内存分布情况,发现使用Spring Boot时,内存使用一直在增加,突然某个点内存使用下降了好多(使用量直接由3G降为700M左右)。这个点应该就是GC引起的,内存应该释放了,但是在操作系统层面并没有看到内存变化,那是不是没有释放到操作系统,被内存分配器持有了呢?

继续探究,发现系统默认的内存分配器(glibc 2.12版本)和使用gperftools内存地址分布差别很明显,2.5G地址使用smaps发现它是属于Native Stack。内存地址分布如下:

gperftools显示的内存地址分布

到此,基本上可以确定是内存分配器在捣鬼;搜索了一下glibc 64M,发现glibc从2.11开始对每个线程引入内存池(64位机器大小就是64M内存),原文如下:

glib内存池说明

按照文中所说去修改MALLOC_ARENA_MAX环境变量,发现没什么效果。查看tcmalloc(gperftools使用的内存分配器)也使用了内存池方式。

为了验证是内存池搞的鬼,笔者就简单写个不带内存池的内存分配器。使用命令gcc zjbmalloc.c -fPIC -shared -o zjbmalloc.so生成动态库,然后使用export LD_PRELOAD=zjbmalloc.so替换掉glibc的内存分配器。其中代码Demo如下:

#include<sys/mman.h>
#include<stdlib.h>
#include<string.h>
#include<stdio.h>
//作者使用的64位机器,sizeof(size_t)也就是sizeof(long) 
void* malloc ( size_t size )
{long* ptr = mmap( 0, size + sizeof(long), PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0 );if (ptr == MAP_FAILED) {return NULL;}*ptr = size;                     // First 8 bytes contain length.return (void*)(&ptr[1]);        // Memory that is after length variable
}void *calloc(size_t n, size_t size) {void* ptr = malloc(n * size);if (ptr == NULL) {return NULL;}memset(ptr, 0, n * size);return ptr;
}
void *realloc(void *ptr, size_t size)
{if (size == 0) {free(ptr);return NULL;}if (ptr == NULL) {return malloc(size);}long *plen = (long*)ptr;plen--;                          // Reach top of memorylong len = *plen;if (size <= len) {return ptr;}void* rptr = malloc(size);if (rptr == NULL) {free(ptr);return NULL;}rptr = memcpy(rptr, ptr, len);free(ptr);return rptr;
}void free (void* ptr )
{if (ptr == NULL) {return;}long *plen = (long*)ptr;plen--;                          // Reach top of memorylong len = *plen;               // Read lengthmunmap((void*)plen, len + sizeof(long));
}

通过在自定义分配器当中埋点可以发现其实程序启动之后应用实际申请的堆外内存始终在700M-800M之间,gperftools监控显示内存使用量也是在700M-800M左右。但是从操作系统角度来看进程占用的内存差别很大(这里只是监控堆外内存)。

笔者做了一下测试,使用不同分配器进行不同程度的扫包,占用的内存如下:

内存测试对比

为什么自定义的malloc申请800M,最终占用的物理内存在1.7G呢?

因为自定义内存分配器采用的是mmap分配内存,mmap分配内存按需向上取整到整数个页,所以存在着巨大的空间浪费。通过监控发现最终申请的页面数目在536k个左右,那实际上向系统申请的内存等于512k * 4k(pagesize) = 2G。 为什么这个数据大于1.7G呢?

因为操作系统采取的是延迟分配的方式,通过mmap向系统申请内存的时候,系统仅仅返回内存地址并没有分配真实的物理内存。只有在真正使用的时候,系统产生一个缺页中断,然后再分配实际的物理Page。

总结

流程图

整个内存分配的流程如上图所示。MCC扫包的默认配置是扫描所有的JAR包。在扫描包的时候,Spring Boot不会主动去释放堆外内存,导致在扫描阶段,堆外内存占用量一直持续飙升。当发生GC的时候,Spring Boot依赖于finalize机制去释放了堆外内存;但是glibc为了性能考虑,并没有真正把内存归返到操作系统,而是留下来放入内存池了,导致应用层以为发生了“内存泄漏”。所以修改MCC的配置路径为特定的JAR包,问题解决。笔者在发表这篇文章时,发现Spring Boot的最新版本(2.0.5.RELEASE)已经做了修改,在ZipInflaterInputStream主动释放了堆外内存不再依赖GC;所以Spring Boot升级到最新版本,这个问题也可以得到解决。

参考资料

  1. GNU C Library (glibc)
  2. Native Memory Tracking
  3. Spring Boot
  4. gperftools
  5. Btrace

作者简介

  • 纪兵,2015年加入美团,目前主要从事酒店C端相关的工作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/479202.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Facebook刷新开放域问答SOTA:模型训模型!Reader当Teacher!

文 | Sherry 不是小哀编 | 小轶一部问答系统发展史就是一部人工智能发展史。早在1950年的图灵测试就提出&#xff1a;如果人类无法通过问答将机器和人区分开&#xff0c;那么这个机器就可以被认为具有智能。问答系统和人工智能有着密不可分的关系。从基于规则和结构化数据的自动…

LeetCode 1038. 从二叉搜索树到更大和树(逆中序-右根左-降序)

1. 题目 2. 解题 二叉搜索树 逆中序遍历&#xff08;右根左&#xff09;是降序的 class Solution { public:TreeNode* bstToGst(TreeNode* root) {stack<TreeNode*> stk;int sum 0;TreeNode *rootcopy root;while(root || !stk.empty()) {while(root){stk.push(root);…

Inode 导致 电脑的网络适配器和访问点出现问题

1 电脑好好的&#xff0c;由于项目原因需要安装inode去访问外网的数据集。安装好inode没有什么问题&#xff0c;网络依然可以用。然后不小心重启了一下电脑&#xff0c;发现电脑所有的网络均不正常。网络诊断是电脑的适配器和访问点出现故障。根据网络上的解决方案&#xff0c;…

应用实践 | 南方科技大学研发基于新型冠状病毒知识图谱模式挖掘系统

本文转载自公众号&#xff1a;南方科技大学计算机科学与工程系。随着新型冠状病毒疫情的不断发展&#xff0c;有关疫情的各类信息也在不断更新&#xff0c;如何利用知识图谱从大量新型冠状病毒肺炎信息中高效挖掘相关频繁模式&#xff08;如病毒的宿主、传播途径&#xff09;成…

java.lang.NoClassDefFoundError: * : Landroid/support/v7/gridlayout/R$styleable 异常终极解决办法

该问题解决办法适用于任何类似问题。 问题的标准异常描述为&#xff1a;java.lang.NoClassDefFoundError: Failed resolution of: Landroid/support/v7/gridlayout/R$styleable 今天由于项目需要&#xff0c;想在项目中使用GridLayout&#xff0c;无奈&#xff0c;标准库中的…

训练一个130亿参数的模型要用几个GPU?微软:一个就够

文&#xff5c;蛋酱、张倩源&#xff5c;机器之心现在的模型动辄数百、数千亿参数&#xff0c;普通人训不动怎么办&#xff1f;前不久&#xff0c;谷歌发布了参数量为 1.6 万亿的语言模型Swith Transformer&#xff0c;将 GPT-3 创下的参数量记录&#xff08;1750 亿&#xff0…

技术年货:美团技术沙龙合辑大放送——85个演讲,70+小时视频

你好&#xff0c;2019 再见&#xff0c;2018 又到了一年辞旧迎新的时候&#xff0c;大家应该也和美美一样&#xff0c;在忙着总结回顾和展望规划吧。 按老惯例&#xff0c;我们该献上技术年货了。今年首先出场的&#xff0c;是我们的技术沙龙大套餐&#xff01; 美团技术沙龙是…

LeetCode 442. 数组中重复的数据

1. 题目 给定一个整数数组 a&#xff0c;其中1 ≤ a[i] ≤ n &#xff08;n为数组长度&#xff09;, 其中有些元素出现两次而其他元素出现一次。 找到所有出现两次的元素。 你可以不用到任何额外空间并在O(n)时间复杂度内解决这个问题吗&#xff1f; 示例&#xff1a;输入:…

如何恢复在 PyCharm 中误删的整个项目文件

如何恢复在 PyCharm 中误删的整个项目文件 方案1: 在误删项目的原始文件地址下新建相同文件名的空文件夹,即新文件夹与被误删项目的路径相同. 在 PyCharm 中打开该新文件夹,右键文件夹,点击 Local History 下的 Show History. 页面左侧为删除的文件信息(时间等),点击文件名右…

征稿 | ​2020年全国知识图谱与语义计算大会

China Conference on Knowledge Graph and Semantic Computing(CCKS 2020)www.sigkg.cn/ccks2020征稿启事&#xff08;第二轮&#xff09;2020年8月15日-18日&#xff0c;南昌征稿截止: 2020年5月21日第十四届全国知识图谱与语义计算大会&#xff08;CCKS: China Conference o…

新手福利:百度官方中文教程,过年也要深度学习!

很多小伙伴在后台给我留言&#xff0c;零基础如何入门深度学习&#xff1f;想要做算法工程师&#xff0c;自学了python基础&#xff0c;现在还来得及吗&#xff1f;这个问题很大。很难说一篇文章几句话就能解决这个问题。今天我给大家说一下自己的一些个人经验&#xff0c;比较…

LeetCode 232. 用栈实现队列(双栈法-队列)

1. 题目 使用栈实现队列的下列操作&#xff1a; push(x) – 将一个元素放入队列的尾部。 pop() – 从队列首部移除元素。 peek() – 返回队列首部的元素。 empty() – 返回队列是否为空。 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&#xff1a;https://le…

论文浅尝 | Tree-to-sequence 学习知识问答

论文笔记整理&#xff1a;谭亦鸣&#xff0c;东南大学博士生&#xff0c;研究兴趣&#xff1a;知识图谱问答。来源&#xff1a;Neurocomputing 372: 64-72 (2020)链接&#xff1a;https://sciencedirect.xilesou.top/science/article/abs/pii/S0925231219312639对于知识图谱问答…

别再搞纯文本了!多模文档理解更被时代需要!

文 | Ryan都已经2021年了&#xff0c;互联网已经今非昔比&#xff0c;20年前纯文本的日子已经一去不复返&#xff0c;文字已经满足不了网页、文章的需求&#xff0c;绝大部分都会有着精心设计的表格、图片&#xff0c;甚至视频。PDF文档这种富文本格式拥有更加复杂的结构信息&a…

iOS 覆盖率检测原理与增量代码测试覆盖率工具实现

背景 对苹果开发者而言&#xff0c;由于平台审核周期较长&#xff0c;客户端代码导致的线上问题影响时间往往比较久。如果在开发、测试阶段能够提前暴露问题&#xff0c;就有助于避免线上事故的发生。代码覆盖率检测正是帮助开发、测试同学提前发现问题&#xff0c;保证代码质量…

LeetCode 199. 二叉树的右视图(DFS 按层queue)

文章目录1. 题目2. 解题2.1 DFS2.2 queue按层从右边遍历1. 题目 给定一棵二叉树&#xff0c;想象自己站在它的右侧&#xff0c;按照从顶部到底部的顺序&#xff0c;返回从右侧所能看到的节点值。 示例:输入: [1,2,3,null,5,null,4] 输出: [1, 3, 4] 解释:1 <--…

论文浅尝 | 中科院百度微软等学者最新综述论文40+最新方法阐述知识图谱提升推荐系统准确性与可解释性...

本文转载自公众号&#xff1a;先知。【导读】近来&#xff0c;知识图谱用于推荐系统是关注的焦点&#xff0c;能够提升推荐系统的准确性与可解释性。如何将知识图谱融入到推荐系统呢? 最近中科院计算所百度微软等学者最新综述论文《A Survey on Knowledge Graph-Based Recomm…

美团酒旅起源数据治理平台的建设与实践

背景 作为一家高度数字化和技术驱动的公司&#xff0c;美团非常重视数据价值的挖掘。在公司日常运行中&#xff0c;通过各种数据分析挖掘手段&#xff0c;为公司发展决策和业务开展提供数据支持。 经过多年的发展&#xff0c;美团酒旅内部形成了一套完整的解决方案&#xff0c;…

LeetCode 1103. 分糖果 II

1. 题目 排排坐&#xff0c;分糖果。 我们买了一些糖果 candies&#xff0c;打算把它们分给排好队的 n num_people 个小朋友。 给第一个小朋友 1 颗糖果&#xff0c;第二个小朋友 2 颗&#xff0c;依此类推&#xff0c;直到给最后一个小朋友 n 颗糖果。 然后&#xff0c;我…

计算广告与推荐系统有哪些区别?

文 | King James本文已获作者授权&#xff0c;禁止二次转载计算广告和推荐系统总感觉有千丝万缕的关系&#xff0c;但是它们之间又有什么异同呢&#xff1f;话不多说&#xff0c;上图&#xff01;计算广告和推荐系统有交集&#xff0c;但是不能说推荐系统是计算广告的一部分。因…