动态规划之0-1背包问题

动态规划之0-1背包问题

文章目录

    • 动态规划之0-1背包问题
      • 一、先给出代码
      • 二、讲解
        • 第一步:初始化
        • 第二步:动态规划,填表
        • 第三步:回溯,找到选择方案
        • 总结
      • 三、进阶(用一维数组解决问题)


一、先给出代码

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
void Bp(vector<int >&weights, vector<int> &values, vector<vector<int>>& dp,int bag_weight,vector<int>&result)
{//初始化for (int j = weights[0]; j <= bag_weight; j++) {dp[0][j] = values[0];}//动态规划,填表//因为第一行是要单独初始化的,后面还要建立在第一行的基础上,所以i初始值为1for (int i = 1; i < weights.size(); i++) {for (int j = 0; j <= bag_weight; j++) {//第一种情况,第i个物品就算单独放也不行;第二种情况,拿上一个没i的结果和有i的比较if (j < weights[i]) {dp[i][j] = dp[i - 1][j];}else {dp[i][j] = max(dp[i - 1][j], dp[i-1][j-weights[i]] + values[i]);}}}//统计拿走的东西种类for (int i = weights.size() - 1, j = bag_weight; i > 0; i--) {if (dp[i][j] > dp[i - 1][j]) {result.push_back(i);j -= weights[i];}if (i == 1 && dp[i][j] !=values[i]) {//如果dp[1][j]的不等于values[1]result.push_back(0);}}
}int main()
{int num,weight, value,bag_weight;vector <int> weights ;vector<int> values ;vector<int>result;cout << "Please enter the number of weights and values!" << endl;//输入东西种类数量cin >> num;//分别输入重量和价值cout << "Please enter the  weights! " << endl;for (int i = 0; i < num;i++) {cin >> weight;weights.push_back(weight);}cout << "Please enter the values!" << endl;for (int i = 0; i < num; i++) {cin >> value;values.push_back(value);}cout << "Please enter the weight of bag!" << endl;cin>> bag_weight ;vector<vector<int>> dp(weights.size() + 1, vector<int>(bag_weight + 1, 0));Bp(weights,values,dp,bag_weight,result);//输出总额和拿走的东西种类cout <<"The total prize is :" << dp[weights.size() - 1][bag_weight] << endl;cout << "The way of result is :" << endl;for (auto it = result.rbegin(); it != result.rend();it++) {cout << *it << " ";}return 0;
}

二、讲解

关于dp数组:

**dp[i][j]表示在考虑前i个物品,并且背包容量为j的情况下,能够获得的最大价值。**这样的一个二维数组可以用来记录不同状态下的最优解,其中i表示物品的编号(从0开始),j表示背包的容量。根据题目的要求,我们希望找到dp[weights.size() - 1][bag_weight],即在考虑所有物品,且背包容量为bag_weight的情况下,能够获得的最大价值。

第一步:初始化

for (int j = weights[0]; j <= bag_weight; j++) {dp[0][j] = values[0];
}

在动态规划中,我们通常需要构建一个状态转移表格(dp数组)来记录状态的变化,在01背包问题中,我们有两个状态:背包容量和物品编号。这里的代码初始化了第一行,表示只有第一个物品时,对于不同背包容量的情况下,能够获得的最大价值。这是一个边界条件,因为只有一个物品,所以它要么放入背包,要么不放入,所以只有当背包容量大于等于第一个物品的重量时,才能将其放入背包,获得对应的价值

第二步:动态规划,填表

for (int i = 1; i < weights.size(); i++) {for (int j = 0; j <= bag_weight; j++) {if (j < weights[i]) {dp[i][j] = dp[i - 1][j];} else {dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weights[i]] + values[i]);}}
}

这部分代码构建了整个dp数组。在这里,我们逐步考虑每个物品,以及在不同背包容量下获得的最大价值。对于每个物品,我们有两个选择:放入背包或者不放入背包。每个单元格dp[i][j]的值是根据以下两种情况来确定的:

  1. 如果第i个物品的重量weights[i]大于当前背包容量j,那么不能将第i个物品放入背包,所以最大价值与上一个状态dp[i-1][j]相同。
  2. 如果第i个物品的重量weights[i]小于等于当前背包容量j,那么我们有两种选择:放入第i个物品或者不放入。我们需要比较这两种选择对应的最大价值,选择其中较大的值作为dp[i][j]的值。

第三步:回溯,找到选择方案

for (int i = weights.size() - 1, j = bag_weight; i > 0; i--) {if (dp[i][j] > dp[i - 1][j]) {result.push_back(i);j -= weights[i];}if (i == 1 && dp[i][j] != values[i]) {result.push_back(0);}
}

这部分代码用于回溯,找出实际选择了哪些物品放入背包,从而达到最大价值。从dp数组的右下角(即dp[weights.size() - 1][bag_weight])开始,我们倒退遍历dp数组。如果发现当前位置的最大价值与上一行相同,说明当前物品没有放入背包,我们直接跳到上一行;如果不同,说明当前物品放入了背包,我们将其记录在result中,并将背包容量减去该物品的重量,然后继续向上遍历。还有一种额外情况,就是如果在遍历到第一个物品时,背包容量还有剩余,且最终的最大价值不等于第一个物品的价值,说明第一个物品也被放入了背包。

总结

这个算法的思路是通过动态规划解决01背包问题。它从初始状态出发,通过填充dp数组来逐步构建出最优解。然后通过回溯,找出实际的选择方案。在动态规划的过程中,关键在于将问题分解为子问题,通过比较不同选择来得出最优解,最终获得整体的最优解。

三、进阶(用一维数组解决问题)

我们创建了一个一维向量 dp,其中 dp[i] 表示在背包容量为 i 时可以达到的最大总价值。这个向量的长度是 bag_Weight + 1,因为背包的容量从0到bag_Weight

现在让我们来思考动态规划的递推过程。我们要从第一个物品开始,逐步考虑加入更多的物品,直到考虑完所有物品。为了实现这个过程,我们使用了两个嵌套的循环。外层循环遍历所有的物品,内层循环遍历从背包的最大承重开始,逐步减少背包的容量。

在内层循环中,我们要考虑两种情况:放入当前物品和不放入当前物品。我们通过比较这两种情况来决定背包在当前容量下的最优解。具体来说,如果当前物品的重量不超过背包的当前容量(即 j >= weight[i]),我们就可以尝试放入这个物品,然后在背包剩余容量为 j - weight[i] 时找到前一个状态的最优解,加上当前物品的价值。这个过程保证了在考虑前 i 个物品的情况下,背包容量为 j 的最优解。

在比较放入和不放入当前物品的情况后,我们将较大的值赋给 dp[j],表示背包容量为 j 时的最大总价值。这个过程通过逐渐增加物品数量和背包容量,使得我们可以在最终考虑完所有物品时,得到背包的最优解。

最终,当我们完成外层和内层循环后,dp[bag_Weight] 就存储了问题的最终解,即背包的最大总价值。我们输出这个值,就完成了整个过程。

为什么for循环外层遍历物品,而内层遍历重量?

  1. 外层循环遍历物品(i 的变化): 当我们考虑第 i 个物品时,我们已经考虑了前 i-1 个物品的情况,假设这些子问题的解已经计算出来并存储在 dp 数组中。外层循环在不同的 i 值下,使得我们能够逐个考虑每个物品,并在 dp 数组中记录之前子问题的解。
  2. 内层循环遍历背包容量(j 的变化): 对于每个物品 i,我们需要考虑在背包容量从 bagWeight 逐渐减少到 0 的过程中,如何得到最大总价值。这是因为我们希望逐步填充 dp 数组中更大的背包容量,依赖于之前较小容量下的最优解。通过从 bagWeight 减少到 0 的循环顺序,我们可以确保在计算当前背包容量 j 下的最优解时,之前的更小容量下的解已经计算出来。
#include<iostream>
using namespace std;
#include <vector>
void Bp() {vector<int> weight = { 1, 3, 4 };vector<int> value = { 15, 20, 30 };int bag_Weight = 4;vector<int> dp(bag_Weight + 1, 0);for (int i = 0; i < value.size(); i++) {for (int j = bag_Weight; j >= weight[i]; j--) {dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bag_Weight] << endl;
}int main() {Bp();
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/47226.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

社交工程和钓鱼攻击防范: 分析针对人类心理和社交工程的攻击技术,并介绍预防这些攻击的方法

第一章&#xff1a;引言 随着科技的不断进步&#xff0c;网络安全问题愈发凸显。在这个数字化时代&#xff0c;社交工程和钓鱼攻击成为黑客们获取敏感信息的常用手段。这些攻击不是基于技术漏洞&#xff0c;而是利用人类心理弱点来进行。本文将深入探讨社交工程和钓鱼攻击的原…

Flowable学习[一]

一、参考CSDN博主[水中加点糖]的博客[采用springbootflowable快速实现工作流]&#xff0c;文章地址&#xff1a;https://puhaiyang.blog.csdn.net/article/details/79845248&#xff0c;下载其发布在github上的代码 二、本地解压代码&#xff0c;并加载到idea中 三、使用docke…

ubuntu18.04安装远程控制软件ToDest方法,针对官网指令报错情况

有时我们在家办公&#xff0c;需要控制实验室的笔记本&#xff0c;因此好用的远程控制软件会让我们的工作事半功倍&#xff01; 常用的远程控制软件有ToDesk&#xff0c;向日葵&#xff0c;以及TeamViewer&#xff0c;但是为感觉ToDesk更流畅一些&#xff0c;所以这里介绍一下…

C++ 线程池

目录 一、线程池实现原理 二、定义线程池的结构 三、创建线程池实例 四、添加工作的线程的任务函数 五、管理者线程的任务函数 六、往线程池中添加任务 七、获取线程池工作的线程数量与活着的线程数量 八、线程池的销毁 一、线程池实现原理 线程池的组成主要分为3个部…

深入了解Git:介绍及常用命令指南

当今软件开发领域中&#xff0c;版本控制是一个至关重要的概念&#xff0c;而Git作为最流行的分布式版本控制系统&#xff0c;发挥着不可替代的作用。本文将介绍Git的基本概念以及常用命令&#xff0c;帮助你更好地理解和使用这一强大的工具。 Git简介 Git是一种分布式版本管…

从业务层的代码出发,去排查通用框架代码崩溃的问题

目录 1、问题说明 1.1、Release下崩溃&#xff0c;Debug下很难复现 1.2、用Windbg打开dump文件&#xff0c;发现崩溃在通用的框架代码中 2、进一步分析 2.1、使用IDA查看汇编代码尝试寻找崩溃的线索 2.2、在Windbg中查看相关变量的值 2.3、查看最近代码的修改记录&#…

代码随想录day11

20. 有效的括号 ● 力扣题目链接 ● 给定一个只包括 ‘(’&#xff0c;‘)’&#xff0c;‘{’&#xff0c;‘}’&#xff0c;‘[’&#xff0c;‘]’ 的字符串&#xff0c;判断字符串是否有效。 ● 有效字符串需满足&#xff1a; ● 左括号必须用相同类型的右括号闭合。 ● 左…

SAP ABAPG开发屏幕自动生成日期的搜索帮助

代码如下&#xff1a; REPORT z_jason_test_f4 . TABLES: s031. PARAMETER p_spmon TYPE spmon DEFAULT sy-datum0(6) OBLIGATORY. SELECT-OPTIONS s_spmon FOR s031-spmon DEFAULT sy-datum0(6) OBLIGATORY. AT SELECTION-SCREEN ON VALUE-REQUEST…

机器学习使用场景

在计算机系统中&#xff0c;“经验”通常以“数据”的形式存在。因此&#xff0c;机器学习的主要内容&#xff0c;是关于在计算机上从数据中产生Function的算法&#xff0c;这个Function的作用是将将输入映射成合理的输出。例如给Function输入猫的图片&#xff0c;Function能够…

Python面向对象植物大战僵尸

先来一波效果图 来看看如何设计游戏架构 import sysimport pygameclass BaseSprite(pygame.sprite.Sprite):def __init__(self, name):super().__init__()self.image pygame.image.load(name)self.rect self.image.get_rect()class AnimateSprite(BaseSprite):def __init__(…

C++信息学奥赛1131:基因相关性

这段代码的功能是比较两个字符串的相似度&#xff0c;并根据给定的阈值判断是否相似。 解析注释后的代码如下&#xff1a; #include <iostream> #include <string> using namespace std;int main() {double bf; // 定义双精度浮点数变量bf&#xff0c;用于存储阈…

机器学习深度学习——NLP实战(自然语言推断——数据集)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——NLP实战&#xff08;情感分析模型——textCNN实现&#xff09; &#x1f4da;订阅专栏&#xff1a;机器…

MAC钓鱼并Root权限上线CS并权限维持,以及所有的坑如何解决

本文转载于&#xff1a;https://www.freebuf.com/articles/web/350592.html 作者&#xff1a;文鸯涂鸦智能安全实验室 制作MAC 一、下载工具 首先从github上下载CrossC2。链接&#xff1a;https://github.com/gloxec/CrossC2/releases/tag/v3.1.0。 根据你CS客户端的操作系统选…

python 打印沁园春 雪 居中对齐 文本对齐

以下是python 中使用 DebugInfo 模块居中对齐打印《沁园春・雪》的效果 引入模块 pip install DebugInfopython代码 # -*- coding:UTF-8 -*-# region 引入必要依赖 from DebugInfo.DebugInfo import * # endregion诗文 沁园春 雪 作者: 毛主席 北国风光&#xff0c;千里冰封…

A Survey on Model Compression for Large Language Models

本文是LLM系列文章&#xff0c;关于模型压缩相关综述&#xff0c;针对《A Survey on Model Compression for Large Language Models》的翻译。 大模型的模型压缩综述 摘要1 引言2 方法3 度量和基准3.1 度量3.2 基准 4 挑战和未来方向5 结论 摘要 大型语言模型&#xff08;LLM…

Swagger2 使用

大家好 , 我是苏麟 , 今天带来Swagger的使用 . 官方文档 : 招摇文档 (swagger.io) 访问地址 : 在路径后加上doc.html 例如: http://localhost:8000/doc.html Swagger 使用 依赖 <!--Swagger依赖 核心--><dependency><groupId>io.springfox</groupId&g…

smartsofthelp 5.0 最专业的数据库优化工具,数据库配置优化,数据库高并发优化,SQL 语句优化...

下载地址:百度网盘 请输入提取码 SQL操作返回历史记录&#xff1a; 2023-08-21 20:42:08:220 输入&#xff1a;select version as 版本号 2023-08-21 20:42:08:223 输出&#xff1a;当前数据库实例版本号&#xff1a;Microsoft SQL Server 2012 - 11.0.2100.60 (X64) …

TheGem主题 - 创意多用途和高性能WooCommerce WordPress主题/网站

TheGem主题概述 – 适合所有人的TheGem 作为设计元素、样式和功能的终极 Web 构建工具箱而设计和开发&#xff0c;TheGem主题将帮助您在几分钟内构建一个令人印象深刻的高性能网站&#xff0c;而无需触及一行代码。不要在编码上浪费时间&#xff0c;探索你的创造力&#xff01…

docker优点简介和yum方式安装

一.docker简介 二.docker的优点 1.交付和部署速度快 2.高效虚拟化 3.迁移性和扩展性强 4.管理简单 三.docker的基本概念 1.镜像 2.容器 3.仓库 四.docker的安装部署 &#xff08;1&#xff09;点击容器 ​&#xff08;2&#xff09;选择docker-ce&#xff0c;根据相…

关于uniapp组件的坑

关于uniapp组件的坑 我有一个组件写的没什么问题,但是报下面这个错误 is not found in path “components/xxx/xxxx” (using by “components/yyy/yyy”) 最后经过排除发现命名需要驼峰命名法 我原本组件命名: 文件夹名 test_tttt 文件名 test_tttt.vue 不行 最后改成文件…