【数据结构】回溯算法公式化解题 leetcode经典题目带刷:全排列、组合、子集

目录

    • 回溯算法
      • 一、什么是回溯算法
        • 1、基本思想:
        • 2、一般步骤:
      • 二、题目带练
        • 1、全排列
        • 2、组合
        • 3、子集
      • 三、公式总结

回溯算法

一、什么是回溯算法

回溯算法(Backtracking Algorithm)是一种解决组合问题排列问题选择问题等一类问题的常用算法。它通过尝试所有可能的选择来找到问题的解,当发现当前选择不符合要求时,就回溯到之前的状态,然后尝试其他的选择。

1、基本思想:

  1. 从问题的起始点开始,进行尝试,每次选择一个可能的路径。
  2. 如果发现当前选择无法达到解决问题的目标,就回退到上一个状态,尝试其他的选择。
  3. 不断地重复上述过程,直到找到解决问题的路径,或者遍历完所有可能的选择。

2、一般步骤:

  1. 确定问题的解空间和约束条件。
  2. 从解空间中选择一个可能的选择,进入下一步。
  3. 判断当前选择是否符合约束条件,如果符合,继续深入尝试下一步;如果不符合,回退到上一步。
  4. 重复上述步骤,直到找到解,或者遍历完所有可能的选择。

二、题目带练

1、全排列

题目地址
在这里插入图片描述
分析
看到这道题的描述,不难想到,如果我们要找出所有的排列方式,就要遍历n次数组,每次选择一个不重复元素排列在上次循环选择的元素后面,那这就出现了一个问题怎么对一个数组遍历n次?

显然这是不太可能实现的,因为n是不确定的,但是我们可以换一种思路,通过深度来代表遍历次数,也就是我们常说的回溯算法。

根据题意,我们应当设递归出口为 当前递归的深度 == 数组的长度if(depth == nums.length),同时保存当前的排列方式到集合中。ans.add(new ArrayList<>(path));每次递归的过程中我们需要遍历一次数组for(int i = 0; i < nums.length; i++),判断当前的元素是否被使用过if(used[i]),如果没被使用那么就将其记录下来,并且标记为使用过,继续进入递归path.add(nums[i]); used[i] = true;。当这次递归结束时dfs(nums,depth + 1,used);,撤销当前元素的使用标记,并且移除记录的集合。path.remove(path.size() - 1); used[i] = false;

效果就是调用方法后,先选择元素1path.add(nums[0]); used[0] = true;,再次调用方法记录深度+1dfs(nums,depth + 1,used);,此时发现1已经被选择过了,开始选择2path.add(nums[1]); used[1] = true;,调用递归,深度+1dfs(nums,depth + 1,used);,同理1,2被标记为使用过的元素,继续选择3path.add(nums[2]); used[2] = true;,然后递归结束。这里会退回到深度为2的那次选择,因为2之后还有别的元素可以选择,选择3后发现只有2可以选了,首选项为1的递归结束,依次类推得到所有排列方式。
在这里插入图片描述

代码如下:

class Solution {public List<List<Integer>> ans = new ArrayList<>();public List<Integer> path = new ArrayList<>();public List<List<Integer>> permute(int[] nums) {boolean[] used = new boolean[nums.length];dfs(nums,0,used);return ans;}public void dfs(int[] nums,int depth,boolean[] used){if(depth == nums.length){ans.add(new ArrayList<>(path));return;}for(int i = 0; i < nums.length; i++){if(used[i]){continue;}path.add(nums[i]);used[i] = true;dfs(nums,depth + 1,used);path.remove(path.size() - 1);used[i] = false;}}
}

2、组合

题目地址
在这里插入图片描述
分析

这道题与全排列的区别在于,全排列需要全部选择,而这道题不一定要全部选择,并且每个组合只能有一次,所以面对这道题,我们不能按照和之前同样的思路去解,因为无法排除同样组合的组合顺序问题。

那么我们要如何作出改动呢?

其实很简单,我们只需要让每次循环的起始值变为当前的深度即可,同时也不需要判断是否使用过了,因为我们只会向后找,不会从前开始往后找了。

class Solution {List<Integer> temp = new ArrayList<Integer>();List<List<Integer>> ans = new ArrayList<List<Integer>>();public List<List<Integer>> combine(int n, int k) {dfs(1, n, k);return ans;}public void dfs(int depth, int n, int k) {if (temp.size() == k) {ans.add(new ArrayList<Integer>(temp));return;}for(int i = depth;i <= n;i++){temp.add(i);dfs(i + 1, n, k);temp.remove(temp.size() - 1);}}
}

3、子集

题目地址
在这里插入图片描述
分析

大家看这道题可能会发现,是不是和组合有点相似?区别在哪呢,区别在于子集的选择长度不一定是n,而是[0,n]

其实我们只需要每次回溯都记录一次结果就好了。

class Solution {List<Integer> list = new ArrayList<>();List<List<Integer>> result = new ArrayList<>();public List<List<Integer>> subsets(int[] nums) {dfs(0,nums);return result;}public void dfs(int current, int[] nums){result.add(new ArrayList<>(list));if(current == nums.length){return;}for(int i = current; i < nums.length; i++){list.add(nums[i]);dfs(i + 1, nums);list.remove(list.size() - 1);}}
}

三、公式总结

如果认真看完的朋友可以发现,对于这种基础的回溯题目,我们都可以通过循环+回溯来解决问题,只需要根据具体问题来更改我们的循环条件即可。

当然这么做不一定是最好的,还有许多可以优化的地方,只是说大部分情况可以通过这种循环的方式来解决问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/46943.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

layui框架学习(37:学习laytpl基本语法)

layui中的模板引擎模块laytpl属于轻量的 JavaScript 模板引擎&#xff0c;支持在页面中将指定的数据按指定的模板进行展示或处理&#xff0c;此处的模板是指一段包含html和脚本的文本&#xff08;感觉类似asp.net core中的razor标记语言&#xff0c;在网页中嵌入基于服务器的代…

adb devices存在连接emulator-5554怎么办

执行adb kill-server 发现还是有5554这条数据&#xff0c;可以采用window杀死端口号的方法。 netstat -ano | findstr 5554 &#xff0c;去查看pid是什么 得到pid&#xff0c;杀死这个pid taskkill /f /pid xxx

Selenium环境+元素定位大法

selenium 与 webdriver Selenium 是一个用于 Web 测试的工具&#xff0c;测试运行在浏览器中&#xff0c;就像真正的用户在手工操作一样。支持所有主流浏览器 WebDriver 就是对浏览器提供的原生API进行封装&#xff0c;使其成为一套更加面向对象的Selenium WebDriver API。 使…

docker的资源控制及docker数据管理

目录 一.docker的资源控制 1.CPU 资源控制 1.1 资源控制工具 1.2 cgroups有四大功能 1.3 设置CPU使用率上限 1.4 进行CPU压力测试 1.5 设置50%的比例分配CPU使用时间上限 1.6 设置CPU资源占用比&#xff08;设置多个容器时才有效&#xff09; 1.6.1 两个容器测试cpu 2&…

ES 索引重命名--Reindex(一)

ES reindex脚本流程&#xff0c;下图为整体流程&#xff1a; 步骤&#xff08;1&#xff09;&#xff1a;每次写入把之前的索引删除再重新创建索引&#xff0c;然后判断索引是否创建成功&#xff0c;由于创建成功返回结果是json&#xff0c;因此用Json Input插件去解析json获得…

【笔记】Spark3 AQE(Adaptive Query Execution)

提效 7 倍&#xff0c;Apache Spark 自适应查询优化在网易的深度实践及改进 Performance Tuning 配置Spark SQL开启Adaptive Execution特性 How To Use Spark Adaptive Query Execution (AQE) in Kyuubi 【spark系列3】spark 3.0.1 AQE(Adaptive Query Exection)分析 玩转Spark…

数据结构 - 线性表的顺序存储

一、顺序存储定义&#xff1a; 把逻辑上相邻的数据元素存储在物理上相邻的存储单元中。简言之&#xff0c;逻辑上相邻&#xff0c;物理上也相邻顺序表中&#xff0c;任一元素可以随机存取&#xff08;优点&#xff09; 二、顺序表中元素存储位置的计算 三、顺序表在算法中的实…

【C++】运算符重载 | 赋值运算符重载

Ⅰ. 运算符重载 引入 ❓什么叫运算符重载&#xff1f; 就是&#xff1a;运用函数&#xff0c;将现有的运算符重新定义&#xff0c;使其能满足各种自定义类型的运算。 回想一下&#xff0c;我们以前运算的对象是不是都是int、char这种内置类型&#xff1f; 那我们自定义的“…

ctfshow-web10 with rollup 绕过

0x00 前言 CTF 加解密合集CTF Web合集 0x01 题目 0x02 Write Up 基本方法&#xff0c;到处点一点&#xff0c;点到取消的时候&#xff0c;突然发现&#xff0c;可以下载一个文件&#xff1a; 看到这个源码&#xff0c;可以看到只能是通过满足下面的条件来拿到flag&#xff…

多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测

多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测 目录 多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测&#xff0c;WOA-CNN-GR…

SPSS--如何使用分层分析以及分层分析案例分享

分层分析&#xff1a;将资料按某个或某些需要控制的变量的不同分类进行分层&#xff0c;然后再估计暴露因子与某结局变量之间关系的一种资料分析方法。 分层分析的最重要的用途是评估和控制混杂因子所致的混杂偏倚。通过按混杂因子分层&#xff0c;可使每层内的两个比较组在所控…

三维重建 PyQt Python MRP 四视图(横断面,冠状面,矢状面,3D)

本文实现了 Python MPR 的 四视图&#xff0c;横断面&#xff0c;冠状面&#xff0c;矢状面&#xff0c;3D MPR(multi-planner reformation)也称多平面重建&#xff0c;多重面重建是将扫描范围内所有的轴位图像叠加起来再对某些标线标定的重组线所指定的组织进行冠状、矢状位、…

[Go版]算法通关村第十二关白银——字符串经典基础面试题

目录 反转专题题目&#xff1a;反转字符串思路分析&#xff1a;左右双指针 对向交换复杂度&#xff1a;时间复杂度 O ( n ) O(n) O(n)、空间复杂度 O ( 1 ) O(1) O(1)Go代码 题目&#xff1a;反转字符串 II思路分析&#xff1a;K个一组反转思想&#xff08;找到每组的首尾索引…

redis 哨兵模式

目录 一、什么是哨兵模式 二、配置哨兵 三、启动哨兵 四、验证哨兵 五、复制延时 六、选举策略 一、什么是哨兵模式 哨兵也叫 sentinel&#xff0c;它的作用是能够在后台监控主机是否故障&#xff0c;如果故障了根据投票数自动将从库转换为主库。 二、配置哨兵 首先停止…

Day8 智慧商城

项目演示 项目收获 创建项目 调整初始化目录 1.删components里的所有文件 2.删views里的所有文件 3.router/index.js 删路由 删规则 import Vue from vue import VueRouter from vue-routerVue.use(VueRouter)const router new VueRouter({routes: [] })export default route…

【Spring专题】Spring之Bean的生命周期源码解析——阶段二(三)(属性填充之循环依赖底层原理解析)

目录 前置知识循环依赖的产生Spring里面的3个Map 课程内容一、只有一级缓存的推理演进1.1 直接将实例化后生成的对象放入到单例池里面1.1 引入一个中间Map存实例化后的早期对象&#xff08;疑似二级缓存&#xff09;1.3 解决1.2需要被代理的问题&#xff08;疑似二级缓存&#…

面试-快速学习计算机网络-UDP/TCP

1. OSI四层和七层映射 区别&#xff1a; 应用层&#xff0c;表示层&#xff0c;会话层合并为了应用层数据链路层和物理层合并为了网络接口层 2. TCP和UDP的区别&#xff1f; 总结&#xff1a; 1 . TCP 向上层提供面向连接的可靠服务 &#xff0c;UDP 向上层提供无连接不可靠服…

FL Studio21.1中文完整版Win/Mac

FL Studio All Plugins Edition【中文完整版 Win/Mac】适合音乐制作人/工作室使用&#xff0c;全套插件!&#xff08;20.9新增Vintage Chorus&#xff0c;Pitch Shifter变调插件&#xff09;FL Studio是超多顶级音乐人的启蒙首选&#xff01;包括百大DJ冠军Martin Garrix&…

21.0 CSS 介绍

1. CSS层叠样式表 1.1 CSS简介 CSS(层叠样式表): 是一种用于描述网页上元素外观和布局的样式标记语言. 它可以与HTML结合使用, 通过为HTML元素添加样式来改变其外观. CSS使用选择器来选择需要应用样式的元素, 并使用属性-值对来定义这些样式.1.2 CSS版本 CSS有多个版本, 每个…

AI 绘画Stable Diffusion 研究(十一)sd图生图功能详解-美女换装

免责声明: 本案例所用安装包免费提供&#xff0c;无任何盈利目的。 大家好&#xff0c;我是风雨无阻。 为了让大家更直观的了解图生图功能&#xff0c;明白图生图功能到底是干嘛的&#xff0c;能做什么事情&#xff1f;今天我们继续介绍图生图的实用案例-美女换装的制作。 对于…