【机器学习 | 分类指标大全】全面解析分类评估指标:从准确率到AUC,多分类问题也不在话下, 确定不来看看?

在这里插入图片描述

🤵‍♂️ 个人主页: @AI_magician
📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。
👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍
🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)

在这里插入图片描述

该文章收录专栏
[✨— 《深入解析机器学习:从原理到应用的全面指南》 —✨]

分类指标大全

      • 精确度(Accuracy)
      • 灵敏度(Sensitivity/Recall)
      • 特异度(Specificity)
      • 精确率(Precision)
      • F1值(F1-score)
      • AUC值(Area Under the ROC Curve)
      • 多分类指标(multiple classification index)

分类评估指标(以下代码均可在sklearn.metrics找到):

  1. 精确度(Accuracy):分类正确的样本数占总样本数的比例。
  2. 灵敏度(Sensitivity/Recall):真实正类中被正确预测为正类的样本数占总的真实正类样本数的比例。
  3. 特异度(Specificity):真实负类中被正确预测为负类的样本数占总的真实负类样本数的比例。
  4. 精确率(Precision): 被预测为正类的样本中真正是正类的样本数占被预测为正类的样本数的比例。
  5. F1值(F1-score):综合考虑精确率和灵敏度,是精确率和灵敏度的调和平均数
  6. AUC值(Area Under the ROC Curve):ROC曲线下方的面积,用于表示分类器的整体性能

当对一个分类模型进行评估时,通常需要使用多个评估指标来综合考虑其性能。

精确度(Accuracy)

精确度是指分类正确的样本数占总样本数的比例,是最简单直接的评估指标。

精确度计算公式如下:

A c c u r a c y = T P + T N T P + F P + T N + F N Accuracy = \frac{TP + TN}{TP + FP + TN + FN} Accuracy=TP+FP+TN+FNTP+TN

其中, T P TP TP 表示真正类(True Positive)的样本数,即被分类器正确预测为正类的样本数; T N TN TN 表示真负类(True Negative)的样本数,即被分类器正确预测为负类的样本数; F P FP FP 表示误报样本(False Positive)的样本数,即被分类器错误地预测为正类的样本数; F N FN FN 表示漏报样本(False Negative)的样本数,即被分类器错误地预测为负类的样本数。

from sklearn.metrics import accuracy_scorey_true = [0, 1, 0, 1]
y_pred = [0, 1, 1, 1]accuracy = accuracy_score(y_true, y_pred)
print("Accuracy:", accuracy)

灵敏度(Sensitivity/Recall)

灵敏度也称召回率,是指真实正类中被正确预测为正类的样本数占总的真实正类样本数的比例。灵敏度能够反映出分类器对于正样本的识别能力。

灵敏度计算公式如下:

S e n s i t i v i t y = T P T P + F N Sensitivity = \frac{TP}{TP + FN} Sensitivity=TP+FNTP

from sklearn.metrics import recall_scorerecall = recall_score(y_true, y_pred)
print("Sensitivity/Recall:", recall)

特异度(Specificity)

特异度是指真实负类中被正确预测为负类的样本数占总的真实负类样本数的比例。特异度能够反映出分类器对于负样本的识别能力。

特异度计算公式如下:

S p e c i f i c i t y = T N F P + T N Specificity = \frac{TN}{FP + TN} Specificity=FP+TNTN

精确率(Precision)

精确率是指被预测为正类的样本中真正是正类的样本数占被预测为正类的样本数的比例,能够反映出分类器对于正样本的预测准确性。

精确率计算公式如下:

P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP + FP} Precision=TP+FPTP

F1值(F1-score)

F1值是综合考虑精确率和灵敏度的调和平均数,能够综合评价分类器的预测准确性和召回率。

F1值计算公式如下:

F 1 = 2 ∗ P r e c i s i o n ∗ S e n s i t i v i t y P r e c i s i o n + S e n s i t i v i t y = 2 ∗ T P 2 ∗ T P + F P + F N F1 = 2 * \frac{Precision * Sensitivity}{Precision + Sensitivity} = \frac{2 * TP}{2 * TP + FP + FN} F1=2Precision+SensitivityPrecisionSensitivity=2TP+FP+FN2TP

AUC值(Area Under the ROC Curve)

AUC(Area Under the Curve)是一种常用的评估分类模型性能的指标,通常用于ROC曲线(Receiver Operating Characteristic curve)分析。AUC表示ROC曲线下方的面积,其取值范围在0到1之间。

以下是对AUC指标的详细解释:

1. ROC曲线:

  • ROC曲线是以二分类模型为基础绘制出来的一条图形。(如果是多分类,则需要绘制多条)

  • 它展示了当分类器阈值变化时,真阳率(True Positive Rate, TPR)与假阳率(False Positive Rate, FPR)之间的关系。

  • TPR表示正确预测为正例样本占所有实际正例样本比例(sensitivity\recall);FPR表示错误预测为正例样本占所有实际负例样本比例(1 - specificity)。

    以下是绘制ROC曲线的步骤:

    1. 收集模型预测结果和相应的真实标签。这些结果包括模型对每个样本的预测概率或分数以及它们对应的真实标签(0表示负例,1表示正例)。

    2. 根据预测概率或分数对样本进行排序。从高到低排列,使得排名最高的样本具有最大的预测概率或分数。

    3. 选择一个分类阈值,并根据该阈值将样本划分为正例和负例。例如,如果阈值设置为0.5,则所有预测概率大于等于0.5的样本被视为正例,而小于0.5则被视为负例。

    4. 计算此时的真正例率(TPR)和假正例率(FPR)。

      TPR = TP / (TP + FN)

      FPR = FP / (FP + TN)

    5. 重复步骤3和4,使用不同分类阈值来计算一系列不同点对应的TPR和FPR。这些点构成了ROC曲线上的各个坐标。

    6. 绘制ROC曲线,以FPR作为x轴,TPR作为y轴。通过连接这些坐标点可以得到一条典型情况下具有平滑形状且递增趋势的曲线。

    在理想情况下,ROC曲线会靠近左上角,并且与对角线之间存在较大距离。该区域被认为是模型性能最佳、具有高度可区分能力和较小误判率的区域。

2. AUC计算:

  • AUC被定义为ROC曲线下方区域与坐标轴之间所围成的面积。
  • 当一个完美预测器具有TPR=1且FPR=0时,其AUC等于1;而当一个随机猜测器无法进行准确预测时,其AUC约等于0.5。

3. 解读和应用:

  • 较高的AUC意味着分类器具有较好的性能,在不同阈值设置下能够更准确地区分正负类别。
  • AUC可以用于比较不同分类模型的性能,选择最佳模型。
  • AUC还可以用来评估特征工程、调整阈值或优化算法等操作对模型性能的影响。

4. 与准确率和召回率的区别:

  • 准确率(Accuracy)是一个全局指标,衡量分类器在所有样本上预测正确的比例。
  • 召回率(Recall)是一个针对正例类别的指标,衡量分类器成功找到正例样本占所有实际正例样本比例。
  • AUC更关注分类器在不同阈值下判定真假阳性的表现,因此它提供了一种更全面且相对鲁棒的评估方法。

5. 如何运用到多分类:

在多分类问题中,我们可以将每个类别作为正例,并计算出多个二分类子问题的ROC曲线,并通过求解这些子问题下各自点集合并取平均值来获得整体的多类别ROC曲线。

为了绘制多类别的ROC曲线,在每个子问题上执行以下步骤:

  • 将当前类别标记为正例,其他所有类别标记为负例。
  • 计算预测概率或得分,并按照阈值确定预测结果。
  • 根据不同阈值下的真阳率和假阳率绘制ROC曲线。

总而言之,AUC是通过计算ROC曲线下方所围成面积来评估二分类模型性能的指标。它提供了一种直观且综合考虑TPR和FPR之间权衡关系的方式,并广泛应用于机器学习中各种分类问题中。

多分类指标(multiple classification index)

在面对多分类问题时,常用的指标包括准确率(Accuracy)、**混淆矩阵(Confusion Matrix)**以及宏平均(Macro-average)和微平均(Micro-average)。

  1. 准确率:准确率是最简单直观的评估指标,表示模型正确预测的样本比例。对于多分类问题,准确率被定义为所有正确分类的样本数除以总样本数。

  2. 混淆矩阵:混淆矩阵可以提供更详细的多类别分类性能信息。它是一个二维表格,行代表真实类别,列代表预测类别。每个单元格记录了属于特定真实类别和预测类别组合的样本数量。

    例如,在3个类别A、B、C下进行分类时,可能有以下情况:

    • 类A中有10个样本被正确地预测为A。
    • 类B中有5个样本被错误地预测为A。
    • 类C中有3个样本被错误地预测为A。

    这些信息都可以通过混淆矩阵得到,并进一步计算其他指标如精确度、召回率等。

  3. 宏平均与微平均:在处理多分类问题时,我们通常需要将各种指标汇总成一个统一的度量(即拆分成多个二分类子问题,最后求平均得到结果)。宏平均和微平均是两种常用的方法。

    • 宏平均:对每个类别单独计算指标(如精确度、召回率等),然后求取其算术平均值。它将所有类别视为同等重要,适用于各个类别都具有相似重要性的情况

    • 微平均:将多分类问题视为二分类问题,在所有样本上进行计算指标(如精确度、召回率等)。这意味着每个预测都被认为是同等重要的,并且更加关注少数类别。适用于不同类别之间存在明显不平衡时使用。

无论是准确率、混淆矩阵还是宏/微平均,这些指标可以帮助我们评估模型在多分类任务中的整体性能以及对每个特定类别的预测能力。根据具体需求和问题背景,选择合适的评估指标来解读和分析结果非常重要。
在这里插入图片描述

						  🤞到这里,如果还有什么疑问🤞🎩欢迎私信博主问题哦,博主会尽自己能力为你解答疑惑的!🎩🥳如果对你有帮助,你的赞是对博主最大的支持!!🥳

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/46790.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多维时序 | MATLAB实现SCNGO-BiLSTM-Attention多变量时间序列预测

多维时序 | MATLAB实现SCNGO-BiLSTM-Attention多变量时间序列预测 目录 多维时序 | MATLAB实现SCNGO-BiLSTM-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | MATLAB实现SCNGO-BiLSTM-Attention多变量时间序列预测。 模型描…

工作流引擎之Flowable教程(整合SpringBoot)

简介 Flowable是什么,下面是官方文档介绍: Flowable是一个使用Java编写的轻量级业务流程引擎。Flowable流程引擎可用于部署BPMN 2.0流程定义(用于定义流程的行业XML标准), 创建这些流程定义的流程实例,进行…

最优化方法Python计算:牛顿算法

设函数 f ( x ) f(\boldsymbol{x}) f(x), x ∈ R n \boldsymbol{x}\in\text{ℝ}^n x∈Rn二阶连续可微,记 g ( x ) ∇ f ( x ) \boldsymbol{g}(\boldsymbol{x})\nabla f(\boldsymbol{x}) g(x)∇f(x), H ( x ) ∇ 2 f ( x ) \boldsymbol{H}(\…

Java后端开发面试题——框架篇

Spring框架中的bean是单例的吗?Spring框架中的单例bean是线程安全的吗? singleton : bean在每个Spring IOC容器中只有一个实例。 prototype:一个bean的定义可以有多个实例。 Spring bean并没有可变的状态(比如Service类和DAO类)&#xff0c…

时序预测 | MATLAB实现SA-ELM模拟退火算法优化极限学习机时间序列预测

时序预测 | MATLAB实现SA-ELM模拟退火算法优化极限学习机时间序列预测 目录 时序预测 | MATLAB实现SA-ELM模拟退火算法优化极限学习机时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 MATLAB实现SA-ELM模拟退火算法优化极限学习机时间序列预测 程序设计 完整…

(成功踩坑)electron-builder打包过程中报错

目录 注意:文中的解决方法2,一定全部看完,再进行操作,有坑 背景 报错1: 报错2: 1.原因:网络连接失败 2.解决方法1: 3.解决方法2: 3.1查看缺少什么资源文件 3.2去淘…

css学习4(背景)

1、CSS中,颜色值通常以以下方式定义: 十六进制 - 如:"#ff0000"RGB - 如:"rgb(255,0,0)"颜色名称 - 如:"red" 2、background-image 属性描述了元素的背景图像. 默认情况下,背景图像进…

JVM的元空间了解吗?

笔者近期在面试的时候被问到了这个问题,元空间也是Java8当时的一大重大革新,之前暑期实习求职的时候有专门看过,但是近期秋招的时候JVM相关的内容确实有点生疏了,故在此进行回顾。 结构 首先,我们应了解JVM的堆结构&a…

Dockerfile制作Web应用系统nginx镜像

目录 1.所需实现的具体内容 2.编写Dockerfile Dockerfile文件内容: 默认网页内容: 3.构建镜像 4.现在我们运行一个容器,查看我们的网页是否可访问 5.现在再将我们的镜像打包并上传到镜像仓库 1.所需实现的具体内容 基于centos基础镜像…

sql in mac学习记录

鉴于有一段时间没有访问mysql了,最近打算在mac 系统上下载mysql 练习一下sql的使用,于是 First, the mysql download https://dev.mysql.com/downloads/mysql/ Second, Mysql install steps Install the software by normally install one software …

时序预测 | MATLAB实现ELM极限学习机时间序列预测(多指标、相关图)

时序预测 | MATLAB实现ELM极限学习机时间序列预测(多指标、相关图) 目录 时序预测 | MATLAB实现ELM极限学习机时间序列预测(多指标、相关图)效果一览基本介绍程序设计学习总结参考资料效果一览 基本介绍 时序预测 | MATLAB实现ELM极

前端-初始化Vue3+TypeScript

如果使用如下命令初始化项目,项目很干净,很适合了解项目的各个结构。 npm init vitelatest如果使用如下命令初始化项目,是可以选择你需要的组件 npm init vuelatest

vue根据template结构自动生成css/scss/less样式嵌套

vscode搜索安装插件:AutoScssStruct4Vue

十、接口(3)

本章概要 接口适配接口字段 初始化接口中的字段 接口嵌套接口和工厂方法模式 接口适配 接口最吸引人的原因之一是相同的接口可以有多个实现。在简单情况下体现在一个方法接受接口作为参数,该接口的实现和传递对象则取决于方法的使用者。 因此,接口的…

Linux 系统的如何优化(面试题)

Linux 系统的如何优化(面试题) (1) 禁用不需要的服务 ntsysv 命令最为方便,执行后,把不需要的勾选去掉就行 (2)避免直接使用root用户,普遍用户通过sudo授权操作 (3)通过…

wustojc日期格式变化

#include <stdio.h> int main() {char a[10];for(int i0;i<10;i){//用一个耍聪明的方法&#xff0c;全部用数组存储&#xff1b;面向结果编程a[0]getchar();}printf("%c%c%c%c%c%c%c%c%c%c",a[6],a[7],a[8],a[9],a[2],a[0],a[1],a[5],a[3],a[4]);return 0;}…

数据结构:栈和队列

文章目录 一、栈1.栈的概念及结构1.栈的概念及结构2.栈的实现 2.栈的顺序表实现1.栈的结构体和实现的功能函数2.栈的初始化&#xff0c;入栈和出栈操作3.栈的其他操作 3.栈的链表实现1.栈的结构体和实现的功能函数2.栈功能函数的实现 二、队列1.队列的概念及结构1.队列的概念及…

【使用教程】在Ubuntu下运行CANopen通信PMM伺服电机使用教程(NimServoSDK_V2.0.0)

本教程将指导您在Ubuntu操作系统下使用NimServoSDK_V2.0.0来运行CANopen通信的PMM系列一体化伺服电机。我们将介绍必要的步骤和命令&#xff0c;以确保您能够成功地配置和控制PMM系列一体化伺服电机。 NimServoSDK_V2.0.0是一款用于PMM一体化伺服电机的软件开发工具包。它提供了…

Harmony OS教程学习笔记

基础知识 1.如何修改程序启动的第一个页面&#xff1f; 不想使用创建的默认的页面&#xff0c;这时需要修改启动页面&#xff0c;修改的地方在EntryAbility文件中的onWindowStageCreate方法中。 onWindowStageCreate(windowStage: window.WindowStage) {// Main window is cr…

Golang Gorm 更新字段 save update updates

更新和删除操作的前提条件都是要在找到数据的情况下&#xff0c;先要查询到数据才可以做操作。 更新的前提的先查询到记录&#xff0c;Save保存所有字段&#xff0c;用于单个记录的全字段更新它会保控所有字段&#xff0c;即使零值也会保存。 在更新和删除之前&#xff0c;要利…