算法leetcode|72. 编辑距离(rust重拳出击)


文章目录

  • 72. 编辑距离:
    • 样例 1:
    • 样例 2:
    • 提示:
  • 分析:
  • 题解:
    • rust:
      • 二维数组(易懂)
      • 滚动数组(更加优化的内存空间)
    • go:
    • c++:
    • python:
    • java:


72. 编辑距离:

给你两个单词 word1word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

样例 1:

输入:word1 = "horse", word2 = "ros"输出:3解释:horse -> rorse (将 'h' 替换为 'r')rorse -> rose (删除 'r')rose -> ros (删除 'e') 

样例 2:

输入:word1 = "intention", word2 = "execution"输出:5解释:intention -> inention (删除 't')inention -> enention (将 'i' 替换为 'e')enention -> exention (将 'n' 替换为 'x')exention -> exection (将 'n' 替换为 'c')exection -> execution (插入 'u')

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1word2 由小写英文字母组成

分析:

  • 面对这道算法题目,二当家的再次陷入了沉思。

  • 编辑距离算法在实际应用中还是很多的,比如一些命令的参数,当输入了错误的参数时,会提示最相似的命令。
    在这里插入图片描述- 想要找最优解,一般就是贪心或者动态规划。

  • 思考后会发现,完整串的编辑距离和子串的编辑距离有关系,所以考虑使用动态规划。

  • 别急,这里还有一个问题,题目中可以对两个单词分别进行三种操作,所以相当于一共有六种操作,其中插入字符依赖较短字符串,而删除字符的操作就反向依赖了较长串,但是动态规划是从一个初识条件开始,朝着一个方向计算的,这里依赖着两种方向,这怎么办?

  • 其实,我们可以将相同效果的操作合并处理:

    1. 对单词 A 删除一个字符和对单词 B 插入一个字符是等价的。例如当单词 A 为 doge,单词 B 为 dog 时,我们既可以删除单词 A 的最后一个字符 e,得到相同的 dog,也可以在单词 B 末尾添加一个字符 e,得到相同的 doge;

    2. 同理,对单词 B 删除一个字符和对单词 A 插入一个字符也是等价的;

    3. 对单词 A 替换一个字符和对单词 B 替换一个字符是等价的。例如当单词 A 为 bat,单词 B 为 cat 时,我们修改单词 A 的第一个字母 b -> c,和修改单词 B 的第一个字母 c -> b 是等价的。

  • 这样一来,本质不同的操作实际上只有三种:

    1. 在单词 A 中插入一个字符;

    2. 在单词 B 中插入一个字符;

    3. 修改单词 A 的一个字符。

  • 这样一来,我们就可以把原问题转化为规模较小的子问题。以样例1为例,我们用 A = horse,B = ros 作为例子,来看一看是如何把这个问题转化为规模较小的若干子问题的:

    1. 在单词 A 中插入一个字符:如果我们知道 horse 到 ro 的编辑距离为 a,那么显然 horse 到 ros 的编辑距离不会超过 a + 1。这是因为我们可以在 a 次操作后将 horse 和 ro 变为相同的字符串,只需要额外的 1 次操作,在单词 A 的末尾添加字符 s,就能在 a + 1 次操作后将 horse 和 ro 变为相同的字符串;

    2. 在单词 B 中插入一个字符:如果我们知道 hors 到 ros 的编辑距离为 b,那么显然 horse 到 ros 的编辑距离不会超过 b + 1,原因同上;

    3. 修改单词 A 的一个字符:如果我们知道 hors 到 ro 的编辑距离为 c,那么显然 horse 到 ros 的编辑距离不会超过 c + 1,原因同上。

  • 那么从 horse 变成 ros 的编辑距离应该为 min(a + 1, b + 1, c + 1)。

  • 因此,我们就可以使用动态规划来解决这个问题了。我们用 D[i][j] 表示 A 的前 i 个字母和 B 的前 j 个字母之间的编辑距离。

  • 如上所述,当我们获得 D[i][j-1],D[i-1][j] 和 D[i-1][j-1] 的值之后就可以计算出 D[i][j]。

    1. D[i][j-1] 为 A 的前 i 个字符和 B 的前 j - 1 个字符编辑距离的子问题。即对于 B 的第 j 个字符,我们在 A 的末尾添加了一个相同的字符,那么 D[i][j] 最小可以为 D[i][j-1] + 1;

    2. D[i-1][j] 为 A 的前 i - 1 个字符和 B 的前 j 个字符编辑距离的子问题。即对于 A 的第 i 个字符,我们在 B 的末尾添加了一个相同的字符,那么 D[i][j] 最小可以为 D[i-1][j] + 1;

    3. D[i-1][j-1] 为 A 前 i - 1 个字符和 B 的前 j - 1 个字符编辑距离的子问题。即对于 B 的第 j 个字符,我们修改 A 的第 i 个字符使它们相同,那么 D[i][j] 最小可以为 D[i-1][j-1] + 1。特别地,如果 A 的第 i 个字符和 B 的第 j 个字符原本就相同,那么我们实际上不需要进行修改操作。在这种情况下,D[i][j] 最小可以为 D[i-1][j-1]。

  • 一般题解到这里就结束了,但其实我们还可以继续优化空间。

  • 由于动态规划中,我们比较两个子串,只依赖于各减少最后一个字符的子串的编辑距离,所以我们的动态规划数组是可以重复利用的,不需要二维数组,只需要一维数组即可,即滚动数组的方式。


题解:

rust:

二维数组(易懂)

impl Solution {pub fn min_distance(word1: String, word2: String) -> i32 {let l1 = word1.len();let l2 = word2.len();// 有一个字符串为空串if l1 == 0 || l2 == 0 {return (l1 + l2) as i32;}// DP 数组let mut dp = vec![vec![0; l2 + 1]; l1 + 1];// 边界状态初始化(0..=l1).for_each(|i| {dp[i][0] = i;});(0..=l2).for_each(|i| {dp[0][i] = i;});// 计算所有 DP 值(1..=l1).for_each(|i| {(1..=l2).for_each(|j| {let insert1 = dp[i - 1][j] + 1;let insert2 = dp[i][j - 1] + 1;let replace1 = if word1.as_bytes()[i - 1] != word2.as_bytes()[j - 1] {dp[i - 1][j - 1] + 1} else {// 两个字母相同,不用修改,所以操作次数不变dp[i - 1][j - 1]};dp[i][j] = insert1.min(insert2).min(replace1);});});return dp[l1][l2] as i32;}
}

滚动数组(更加优化的内存空间)

impl Solution {pub fn min_distance(mut word1: String, mut word2: String) -> i32 {let mut l1 = word1.len();let mut l2 = word2.len();// 有一个字符串为空串if l1 == 0 {return l2 as i32;}if l2 == 0 {return l1 as i32;}// 让内层单词较短,可以让dp数组较小if l1 < l2 {let wt = word1;word1 = word2;word2 = wt;let lt = l1;l1 = l2;l2 = lt;}// DP 滚动数组let mut dp = (0..=l2).collect::<Vec<_>>();// 计算所有 DP 值word1.bytes().enumerate().for_each(|(i1, c1)| {let mut pre = i1;dp[0] = pre + 1;word2.bytes().enumerate().for_each(|(i2, c2)| {let tmp = dp[i2 + 1];if c1 == c2 {dp[i2 + 1] = pre;} else {// dp[i2 + 1]:相当于向第一个单词插入一个字母// dp[i2]:相当于向第二个单词插入一个字母// pre: 相当于修改第一个单词一个字母dp[i2 + 1] = dp[i2 + 1].min(dp[i2]).min(pre) + 1;}pre = tmp;});});dp[l2] as i32}
}

go:

func minDistance(word1 string, word2 string) int {l1 := len(word1)l2 := len(word2)// 有一个字符串为空串if l1 == 0 {return l2}if l2 == 0 {return l1}// 让内层单词较短,可以让dp数组较小if l1 < l2 {word1, word2 = word2, word1l1, l2 = l2, l1}// DP 滚动数组dp := make([]int, l2+1)for i := 1; i <= l2; i++ {dp[i] = i}// 计算所有 DP 值for i1, c1 := range word1 {pre := i1dp[0] = pre + 1for i2, c2 := range word2 {tmp := dp[i2+1]if c1 == c2 {dp[i2+1] = pre} else {// dp[i2 + 1]:相当于向第一个单词插入一个字母// dp[i2]:相当于向第二个单词插入一个字母// pre: 相当于修改第一个单词一个字母if dp[i2+1] > dp[i2] {dp[i2+1] = dp[i2]}if dp[i2+1] > pre {dp[i2+1] = pre}dp[i2+1] += 1}pre = tmp}}return dp[l2]
}

c++:

class Solution {
public:int minDistance(string word1, string word2) {int l1 = word1.length(), l2 = word2.length();// 有一个字符串为空串if (l1 == 0) {return l2;}if (l2 == 0) {return l1;}// 让内层单词较短,可以让dp数组较小if (l1 < l2) {string wt = word1;word1 = word2;word2 = wt;int lt = l1;l1 = l2;l2 = lt;}// DP 滚动数组int dp[l2 + 1];for (int i = 1; i <= l2; ++i) {dp[i] = i;}// 计算所有 DP 值for (int i1 = 0; i1 < l1; ++i1) {int pre = i1;dp[0] = pre + 1;for (int i2 = 0; i2 < l2; ++i2) {const int tmp = dp[i2 + 1];if (word1[i1] == word2[i2]) {dp[i2 + 1] = pre;} else {// dp[i2 + 1]:相当于向第一个单词插入一个字母// dp[i2]:相当于向第二个单词插入一个字母// pre: 相当于修改第一个单词一个字母dp[i2 + 1] = min(min(dp[i2 + 1], dp[i2]), pre) + 1;}pre = tmp;}}return dp[l2];}
};

python:

class Solution:def minDistance(self, word1: str, word2: str) -> int:l1 = len(word1)l2 = len(word2)# 有一个字符串为空串if l1 == 0:return l2if l2 == 0:return l1# 让内层单词较短,可以让dp数组较小if l1 < l2:word1, word2 = word2, word1l1, l2 = l2, l1# DP 数组dp = [x for x in range(l2 + 1)]# 计算所有 DP 值for i1 in range(l1):pre = i1dp[0] = pre + 1for i2 in range(l2):tmp = dp[i2 + 1]if word1[i1] == word2[i2]:dp[i2 + 1] = preelse:# dp[i2 + 1]:相当于向第一个单词插入一个字母# dp[i2]:相当于向第二个单词插入一个字母# pre: 相当于修改第一个单词一个字母dp[i2 + 1] = min(dp[i2 + 1], dp[i2], pre) + 1pre = tmpreturn dp[l2]

java:

class Solution {public int minDistance(String word1, String word2) {int l1 = word1.length(), l2 = word2.length();// 有一个字符串为空串if (l1 == 0) {return l2;}if (l2 == 0) {return l1;}// 让内层单词较短,可以让dp数组较小if (l1 < l2) {String wt = word1;word1 = word2;word2 = wt;int lt = l1;l1 = l2;l2 = lt;}// DP 滚动数组int[] dp = new int[l2 + 1];for (int i = 1; i <= l2; ++i) {dp[i] = i;}// 计算所有 DP 值for (int i1 = 0; i1 < l1; ++i1) {int pre = i1;dp[0] = pre + 1;for (int i2 = 0; i2 < l2; ++i2) {final int tmp = dp[i2 + 1];if (word1.charAt(i1) == word2.charAt(i2)) {dp[i2 + 1] = pre;} else {// dp[i2 + 1]:相当于向第一个单词插入一个字母// dp[i2]:相当于向第二个单词插入一个字母// pre: 相当于修改第一个单词一个字母dp[i2 + 1] = Math.min(Math.min(dp[i2 + 1], dp[i2]), pre) + 1;}pre = tmp;}}return dp[l2];}
}

非常感谢你阅读本文~
欢迎【点赞】【收藏】【评论】三连走一波~
放弃不难,但坚持一定很酷~
希望我们大家都能每天进步一点点~
本文由 二当家的白帽子:https://le-yi.blog.csdn.net/ 博客原创~


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/46179.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

内网穿透实战应用-windows搭建WebDAV服务,并内网穿透公网访问【无公网IP】

windows搭建WebDAV服务&#xff0c;并内网穿透公网访问【无公网IP】 文章目录 windows搭建WebDAV服务&#xff0c;并内网穿透公网访问【无公网IP】1. 安装IIS必要WebDav组件2. 客户端测试3. cpolar内网穿透3.1 打开Web-UI管理界面3.2 创建隧道3.3 查看在线隧道列表3.4 浏览器访…

设计模式之代理模式(Proxy)的C++实现

1、代理模式的提出 在组件的开发过程中&#xff0c;有些对象由于某种原因&#xff08;比如对象创建的开销很大&#xff0c;或者对象的一些操作需要做安全控制&#xff0c;或者需要进程外的访问等&#xff09;&#xff0c;会使Client使用者在操作这类对象时可能会存在问题&…

Vue2到3 Day7 全套学习内容,众多案例上手(内付源码)

简介&#xff1a; Vue2到3 Day1-3 全套学习内容&#xff0c;众多案例上手&#xff08;内付源码&#xff09;_星辰大海1412的博客-CSDN博客本文是一篇入门级的Vue.js介绍文章&#xff0c;旨在帮助读者了解Vue.js框架的基本概念和核心功能。Vue.js是一款流行的JavaScript前端框架…

【Java 动态数据统计图】动态数据统计思路案例(动态,排序,数组)一(112)

需求&#xff1a;&#xff1a; 有一个List<Map<String.Object>>,存储了某年某月的数据&#xff0c; 数据是根据用户查询条件进行显示的&#xff1b;所以查询的数据是动态的&#xff1b;需按月份统计每个年月数据出现的次数&#xff0c;并且按照月份排序&#xff1…

c#设计模式-结构型模式 之 代理模式

前言 由于某些原因需要给某对象提供一个代理以控制对该对象的访问。这时&#xff0c;访问对象不适合或者不能直接 引用目标对象&#xff0c;代理对象作为访问对象和目标对象之间的中介。在学习代理模式的时候&#xff0c;可以去了解一下Aop切面编程AOP切面编程_aop编程…

项目实战 — 博客系统③ {功能实现}

目录 一、编写注册功能 &#x1f345; 1、使用ajax构造请求&#xff08;前端&#xff09; &#x1f345; 2、统一处理 &#x1f384; 统一对象处理 &#x1f384; 保底统一返回处理 &#x1f384; 统一异常处理 &#x1f345; 3、处理请求 二、编写登录功能 &#x1f345; …

vue引入 import { decode } from ‘js-base64‘

vue引入 import { decode } from ‘js-base64’ package.json 里面加上 需要用的地方 加上 import { decode } from ‘js-base64’ let params decode(loook)最后 npm install

sh 脚本循环语句和正则表达式

目录 1、循环语句 1、for 2、while 3、until 2、正则表达式 1、元字符 2、表示次数 3、位置锚定 4、分组 5、扩展正则表达式 1、循环语句 循环含义 将某代码段重复运行多次&#xff0c;通常有进入循环的条件和退出循环的条件 重复运行次数 循环次数事先已知 循环次…

爱荷华州的一个学区正在使用ChatGPT来决定禁止哪些书籍

为了响应爱荷华州最近颁布的立法&#xff0c;管理员们正在从梅森市学校图书馆移除禁书&#xff0c;官员们正在使用ChatGPT帮助他们挑选书籍&#xff0c;根据公报和大众科学. 由州长金雷诺兹签署的禁令背后的新法律是教育改革浪潮的一部分&#xff0c;共和党立法者认为这是保护…

OLED透明屏案例:揭示技术创新的无限可能性

OLED透明屏作为一项创新性技术&#xff0c;在各个领域展现出了令人惊叹的应用潜力。 那么&#xff0c;尼伽便通过介绍一些具体的OLED透明屏案例&#xff0c;探索其在智能家居、汽车行业、商业展示、航空航天、教育与培训以及医疗健康等领域的成功应用。 这些案例将展示OLED透明…

下线40万辆,欧拉汽车推出2023款好猫尊荣型和GT木兰版

欧拉汽车是中国新能源汽车制造商&#xff0c;成立于2018年。截至目前&#xff0c;已经下线了40万辆整车&#xff0c;可见其在市场的影响力和生产实力。为了庆祝这一里程碑&#xff0c;欧拉汽车推出了品牌书《欧拉将爱进行到底》&#xff0c;在其中讲述了欧拉汽车的发展历程和未…

ORB-SLAM2学习笔记9之图像帧Frame

先占坑&#xff0c;明天再完善… 文章目录 0 引言1 Frame类1.1 成员函数1.2 成员变量 2 Frame类的用途 0 引言 ORB-SLAM2学习笔记8详细了解了图像特征点提取和描述子的生成&#xff0c;本文在此基础上&#xff0c;继续学习ORB-SLAM2中的图像帧&#xff0c;也就是Frame类&#…

VBA技术资料MF44:VBA_把数据从剪贴板粘贴到Excel

【分享成果&#xff0c;随喜正能量】人皆知以食愈饥&#xff0c;莫知以学愈愚,生命中所有的不期而遇都是你努力的惊喜.人越纯粹&#xff0c;就越能感受到美。大江、大河、大海、大山、大自然&#xff0c;这些风景从来都不会受“属于谁”的污染&#xff0c;人人都感受到它们的美…

搭建Everything+cpolar在线资料库,实现随时随地访问

Everythingcpolar搭建在线资料库&#xff0c;实现随时随地访问 文章目录 Everythingcpolar搭建在线资料库&#xff0c;实现随时随地访问前言1.软件安装完成后&#xff0c;打开Everything2.登录cpolar官网 设置空白数据隧道3.将空白数据隧道与本地Everything软件结合起来总结 前…

MySQL索引常见术语(索引下推、索引覆盖、最左匹配等)

一:背景 我们在面试中都知道,对于MySQL索引是必问的。大家也应该都知道MySQL的数据结构,什么是索引。其中在面试中,面试官也经常问,你做过哪些优化?本文主要是介绍MySQL索引的一些常见术语,比如索引下推、索引覆盖、最左匹配等,这些其实也是MySQL优化的一部分,能够熟练…

Docker修改daemon.json添加日志后无法启动的问题

docker实战(一):centos7 yum安装docker docker实战(二):基础命令篇 docker实战(三):docker网络模式(超详细) docker实战(四):docker架构原理 docker实战(五):docker镜像及仓库配置 docker实战(六):docker 网络及数据卷设置 docker实战(七):docker 性质及版本选择 认知升…

了解 JSON 格式

一、JSON 基础 JSON&#xff08;JavaScript Object Notation&#xff0c;JavaScript 对象表示法&#xff09;是一种轻量级的数据交换格式&#xff0c;JSON 的设计目的是使得数据的存储和交换变得简单。 JSON 易于人的阅读和书写&#xff0c;同时也易于机器的解析和生成。尽管 J…

Go语言基础之基本数据类型

Go语言中有丰富的数据类型&#xff0c;除了基本的整型、浮点型、布尔型、字符串外&#xff0c;还有数组、切片、结构体、函数、map、通道&#xff08;channel&#xff09;等。Go 语言的基本类型和其他语言大同小异。 基本数据类型 整型 整型分为以下两个大类&#xff1a; 按…

聚焦电力行业CentOS迁移,麒麟信安受邀参加第六届电力信息通信新技术大会暨数字化发展论坛并发表主题演讲

为加快推进“双碳”目标下的新型能源体系和新型电力系统建设&#xff0c;深化新一代数字技术与电力业务的融合发展&#xff0c;促进电力行业关键技术自主创新、安全可控&#xff0c;助力电力企业数字化转型升级和高质量发展&#xff0c;2023年8月9-11日&#xff0c;第六届电力信…

实现el-table两列多选框且不可同时勾选

1、效果图如下&#xff0c;功能&#xff1a;必修和选修不可同时勾选 2、代码如下 <template><el-table :data"addTableData" style"width: 100%"><el-table-column label"必修" width"55px" align"center"…