线性判别结合源码分析LDA原理

1. LDA的思想

LDA线性判别分析也是一种经典的降维方法,LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的。这点和PCA不同。PCA是不考虑样本类别输出的无监督降维技术。LDA的思想可以用一句话概括,就是“投影后类内方差最小,类间方差最大”。什么意思呢? 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大。
可能还是有点抽象,我们先看看最简单的情况。假设我们有两类数据分别为红色和蓝色,如下图所示,这些数据特征是二维的,我们希望将这些数据投影到一维的一条直线,让每一种类别数据的投影点尽可能的接近,而红色和蓝色数据中心之间的距离尽可能的大。

在这里插入图片描述

上图中提供了两种投影方式,哪一种能更好的满足我们的标准呢?从直观上可以看出,右图要比左图的投影效果好,因为右图的黑色数据和蓝色数据各个较为集中,且类别之间的距离明显。左图则在边界处数据混杂。以上就是LDA的主要思想了,当然在实际应用中,我们的数据是多个类别的,我们的原始数据一般也是超过二维的,投影后的也一般不是直线,而是一个低维的超平面。

在这里插入图片描述
在这里插入图片描述


2.实例结合源码

导包

import numpy as np
from sklearn import datasets
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
import warnings warnings.filterwarnings("ignore") 
X,y = datasets.load_iris(True)
X[:5]

array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2]])

#特征值和特征向量 solver='eigen'/svd
lda = LinearDiscriminantAnalysis(solver='eigen',n_components=2)
X_lda = lda.fit_transform(X,y)
X_lda[:5]

array([[6.01716893, 7.03257409],
[5.0745834 , 5.9344564 ],
[5.43939015, 6.46102462],
[4.75589325, 6.05166375],
[6.08839432, 7.24878907]])

源码截图

def _solve_eigen(self, X, y, shrinkage):
在这里插入图片描述

共分为五步

#1、总的散度矩阵
#协方差X.T 等同rowvar=False,源码中有偏差值bias=1
St = np.cov(X,rowvar=False,bias=1)
St

array([[ 0.68112222, -0.04215111, 1.26582 , 0.51282889],
[-0.04215111, 0.18871289, -0.32745867, -0.12082844],
[ 1.26582 , -0.32745867, 3.09550267, 1.286972 ],
[ 0.51282889, -0.12082844, 1.286972 , 0.57713289]])

#2、类内的散度矩阵
# Scatter 散点图,within(内)
Sw = np.full(shape = (4,4),fill_value=0,dtype = np.float64)
for i in range(3):Sw += np.cov(X[y == i],rowvar=False,bias=1)
Sw/=3
Sw

array([[0.259708 , 0.09086667, 0.164164 , 0.03763333],
[0.09086667, 0.11308 , 0.05413867, 0.032056 ],
[0.164164 , 0.05413867, 0.181484 , 0.041812 ],
[0.03763333, 0.032056 , 0.041812 , 0.041044 ]])

# 3、计算类间的散度矩阵
#Scatter between
Sb = St -Sw
Sb

array([[ 0.42141422, -0.13301778, 1.101656 , 0.47519556],
[-0.13301778, 0.07563289, -0.38159733, -0.15288444],
[ 1.101656 , -0.38159733, 2.91401867, 1.24516 ],
[ 0.47519556, -0.15288444, 1.24516 , 0.53608889]])

# scipy 这个模块下的线性代数子模块
from scipy import linalg
# 4、特征值 和 特征向量
eigen,ev = linalg.eigh(Sb,Sw)print(eigen )
print( ev)

[-1.84103303e-14 1.18322589e-14 2.85391043e-01 3.21919292e+01]
[[ 1.54162331 -2.82590065 0.02434685 0.83779794]
[-2.49358543 1.05970269 2.18649663 1.55005187]
[-2.86907801 1.01439507 -0.94138258 -2.22355955]
[ 4.58628831 0.45101349 2.86801283 -2.83899363]]

ev= ev[:,np.argsort(eigen)[::-1]]
ev

array([[ 0.83779794, 0.02434685, -2.82590065, 1.54162331],
[ 1.55005187, 2.18649663, 1.05970269, -2.49358543],
[-2.22355955, -0.94138258, 1.01439507, -2.86907801],
[-2.83899363, 2.86801283, 0.45101349, 4.58628831]])

# 5、筛选特征向量 ,进行矩阵运算
X.dot(ev[:,:])[:5]

array([[ 6.01716893, 7.03257409, -9.19277808, -3.96472168],
[ 5.0745834 , 5.9344564 , -9.1574493 , -3.02625362],
[ 5.43939015, 6.46102462, -8.48176814, -3.54638757],
[ 4.75589325, 6.05166375, -8.10226933, -4.02500696],
[ 6.08839432, 7.24878907, -8.80421775, -4.36824255]])


3.LDA与PCA比较

相同点

1)两者均可以对数据进行降维。

2)两者在降维时均使用了矩阵特征分解的思想。

3)两者都假设数据符合高斯分布【正态分布】。

不同点

1)LDA是有监督的降维方法,而PCA是无监督的降维方法

2)LDA降维最多降到类别数k-1的维数,而PCA没有这个限制。

3)LDA除了可以用于降维,还可以用于分类。

4)LDA选择分类性能最好的投影方向,而PCA选择样本点投影具有最大方差的方向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/456092.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RIFF文件规范

RIFF文件规范Peter Lee 2007-10-02 摘要:RIFF全称为资源互换文件格式(Resources Interchange File Format),RIFF文件是windows环境下大部分多媒体文件遵循的一种文件结构,常见的如WAV文件、AVI文件等。RIFF可以看成一种…

【机器学习】feature_importances_ 参数源码解析

在用sklearn的时候经常用到feature_importances_ 来做特征筛选,那这个属性到底是啥呢。 分析源码发现来源于每个base_estimator的决策树的 feature_importances_ 由此发现计算逻辑来源于cython文件,这个文件可以在其github上查看源代码 而在DecisionTree…

【机器学习】 关联规则Apriori和mlxtend——推荐算法

引入: 啤酒与尿布的故事 关联规律挖掘:从交易数据中发现:买了X 还会买Y 的规则 关联规律挖掘‘购物篮分析’Market Basket Analysis(MBA) 关联规律->应用于推荐系统 1. 关联规则代码演示 使用的是mlxtend.frequent…

python中的内部函数和闭包函数

内部函数 在函数内部声明的函数就是内部函数。 格式: def 函数名():局部变量...def 内部函数名():Python功能代码...示例: def funName():name dragon#定义一个内部函数def inner():print(我是内部函数)‘’‘注释: 1.内部函数的本质就是局…

【机器学习】K-Means(非监督学习)学习及实例使用其将图片压缩

非监督学习之k-means K-means通常被称为劳埃德算法,这在数据聚类中是最经典的,也是相对容易理解的模型。算法执行的过程分为4个阶段。 1、从数据中选择k个对象作为初始聚类中心; 2、计算每个聚类对象到聚类中心的距离来划分; 3、再次计算…

CloudCC CRM:物联网必将成为CRM的推动力

CRM热门话题背后的主要推动力包括云、社交、移动和大数据,CloudCC CRM认为物联网必将成为CRM的推动力,也就是传感器将事物连接到互联网,创建之前我们从未想到的新型服务。 社交:在销售、市场和客户服务部门,营销人员正…

【tensorflow】tensorflow -gpu安装及jupyter环境更改

tensorflow -gpu安装 首先,安装Anoconda 1. 官网下载点我:2.安装 点击 python 3.6 version自动下载x64版,下载好之后,然后安装。 如图,打上勾之后,一路next3.打开终端 1)输入conda –-version …

【机器学习】朴素贝叶斯介绍及实例--对短信进行二分类 使用多项式分布

贝叶斯 首先什么是贝叶斯? 一个例子,现分别有 A、B 两个容器,在容器 A 里分别有 7 个红球和 3 个白球,在容器 B 里有 1 个红球和 9 个白球,现已知从这两个容器里任意抽出了一个球,且是红球,问这…

Gartner分享物联网和智慧城市最新数据

主题为“移我所想 Mobile is me”的2016世界移动大会上海展正在上海如火如荼的举行,Gartner也在第一时间分享了最新的市场数据,包括企业级用户最为关注的物联网和智慧城市的调查预测报告,下面就一起来看看吧! 智慧城市与物联网 物…

作业帮电脑版在线使用_作业帮:创新科技驱动在线教育新模式

10月15日,在线教育领军企业作业帮在中国校长大会在线教育论坛上,独家发布《学习的真相:全国K12学情大数据及学习洞察》,宣布已推出作业帮直播课“名师大招”课程体系,集中展示多款面向K12人群的教育黑科技和硬件产品。…

【机器学习】DBSCAN聚类算法—优于Kmean—(理论+图解+python代码)

一、前言 二、DBSCAN聚类算法 三、参数选择 四、DBSCAN算法迭代可视化展示 五、常用的评估方法:轮廓系数 六、用Python实现DBSCAN聚类算法 一、前言 去年学聚类算法的R语言的时候,有层次聚类、系统聚类、K-means聚类、K中心聚类,最后呢…

卡巴斯基:风险无国界 网络安全从业者要与小网民保持一致

“互联网没有国界,每个国家碰到的问题基本上是类似的。对于网络犯罪这件事,并不针对哪个国家,任何有弱点、有机会的地方,黑客都会去。”卡巴斯基公司CEO尤金卡巴斯基在接受未来网(微信公众号lovek618)记者采…

windows无法访问指定设备路径或文件_完全免费的文件数据恢复工具:Microsoft Windows File Recovery...

意外删除文件的经历是大多数人都遇到过,但是幸运的是有一种“后悔药”可以吃,因为我们可以使用一些【数据恢复软件】以找回一些已删除的文件。市面上有很多这类型的软件,例如EasyRecovery、DiskGenius、Recuva 等软件。但是,功能强…

【机器学习】XGBoost集成算法——(理论+图解+python代码比较其他算法使用天池蒸汽数据)

一、集成算法思想 二、XGBoost基本思想 三、用python实现XGBoost算法 在竞赛题中经常会用到XGBoost算法,用这个算法通常会使我们模型的准确率有一个较大的提升。既然它效果这么好,那么它从头到尾做了一件什么事呢?以及它是怎么样去做的呢&a…

1万条数据大概占多大空间_国漫丨2019年上半年漫画数据报告

文 │ 骨朵国漫一、各漫画平台总体趋势1、快看漫画快看漫画平台2019年Q2各月评论数较Q1有较明显的下滑,月评论数都在400万条左右;收藏数方面,2019年2月达到了半年内最高值,为2660.1万条。2、看漫画、知音漫客等平台(小明太极旗下)…

【机器学习】 LightGBM——优于XGBoost提升的集成算法(安装+对比XGBoost改进+参数说明+python代码实例)

中文官方文档:http://lightgbm.apachecn.org/cn/latest/Installation-Guide.html 英文官方文档:https://lightgbm.readthedocs.io/en/latest/ 一、lightGBM安装 在anaconda中输入:pip install lightGBM即可 输入import lightgbm as lgb做测…

轻量级代码生成器-OnlyCoder 第一篇

程序猿利器:代码生成器,使用代码生成器已经好几年了,增删改查各种生成,从UI到DATA层均生成过。之前有使用过动软的,T4模板等.... T4生成实体还是没有问题的,但是生成MVC视图就有点烦杂了,动软给…

从Java到Go面向对象--继承思想.md

2019独角兽企业重金招聘Python工程师标准>>> Go语言实现继承 我们都知道Java中通过extends来实现对象的继承,那么Go中怎么实现继承呢?Go语言没有继承,只有组合。我们知道,继承的目的是什么,是类的重用&…

电脑键盘练习_电脑新手最关心的:零基础如何快速掌握电脑打字的技巧?

随着计算机的普及,越来越多的人在工作和生活中需要使用计算机。有的朋友通过参与培训学会了键盘打字,有的朋友自学成才学会了键盘打字。这里笔者给大家分享在0基础的情况下,通过自学快速掌握键盘打字的一种方法。需要说明的是,键盘…

【解决】jupyter在deepin安装上的坑

报错:env: "wine": 没有那个文件或目录 jupyter打开之后无法直接跳转浏览器 解决方法: 1、 生成配置文件jupyter notebook --generate-config 2、打开jupyter_notebook_config.py,在文件最后添加以下代码 选择你的浏览器位置 …