Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。其最初是为了页面抓取 (更确切来说, 网络抓取)所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下
Scrapy主要包括了以下组件:
- 引擎(Scrapy)
用来处理整个系统的数据流处理, 触发事务(框架核心) - 调度器(Scheduler)
用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址 - 下载器(Downloader)
用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的) - 爬虫(Spiders)
爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面 - 项目管道(Pipeline)
负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。 - 下载器中间件(Downloader Middlewares)
位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。 - 爬虫中间件(Spider Middlewares)
介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。 - 调度中间件(Scheduler Middewares)
介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
Scrapy运行流程大概如下:
- 引擎从调度器中取出一个链接(URL)用于接下来的抓取
- 引擎把URL封装成一个请求(Request)传给下载器
- 下载器把资源下载下来,并封装成应答包(Response)
- 爬虫解析Response
- 解析出实体(Item),则交给实体管道进行进一步的处理
- 解析出的是链接(URL),则把URL交给调度器等待抓取
一、安装
Linux:pip3 install scrapyWindows:a. pip3 install wheelb. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twistedc. 进入下载目录,执行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whld. pip3 install scrapye. 下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/
二、基本使用
1. 基本命令
1. scrapy startproject 项目名称# 在当前目录中创建一个项目文件(类似于Django)2. scrapy genspider [-t template] <name> <domain># 创建爬虫应用scrapy gensipider -t basic oldboy oldboy.comscrapy gensipider -t xmlfeed autohome autohome.com.cnPS:查看所有命令:scrapy gensipider -l查看模板命令:scrapy gensipider -d 模板名称3. scrapy list# 展示爬虫应用列表4. scrapy crawl 爬虫应用名称# 运行单独爬虫应用,要在项目内运行
2.项目结构以及爬虫应用简介
project_name/scrapy.cfg # 项目的主配置信息。(真正爬虫相关的配置信息在settings.py文件中)project_name/__init__.pyitems.py # 设置数据存储模板,用于结构化数据,如:Django的Modelpipelines.py # 数据处理行为,如:一般结构化的数据持久化settings.py # 配置文件,如:递归的层数、并发数,延迟下载等spiders/ # 爬虫目录,如:创建文件,编写爬虫规则__init__.py爬虫1.py爬虫2.py爬虫3.py
注意:一般创建爬虫文件时,以网站域名命名
爬虫1.py
import scrapyclass XiaoHuarSpider(scrapy.spiders.Spider):name = "spidername" # 爬虫名称 *****allowed_domains = ["spider.com"] # 允许的域名start_urls = ["http://www.flepeng.com/", # 起始URL]def parse(self, response):# 访问起始URL并获取结果后的回调函数
关于windows编码
import sys,os
sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='gb18030')
3. 小试牛刀
import scrapy
from scrapy.selector import HtmlXPathSelector # 新版的好像已经弃用,使用Selector
from scrapy.http.request import Requestclass DigSpider(scrapy.Spider):name = "dig" # 爬虫应用的名称,通过命令启动爬虫时,使用此参数allowed_domains = ["chouti.com"] # 允许的域名start_urls = ['http://dig.chouti.com/',] # 起始URLhas_request_set = {}def parse(self, response):print(response.url)hxs = HtmlXPathSelector(response)page_list = hxs.select('//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/\d+")]/@href').extract()for page in page_list:page_url = 'http://dig.chouti.com%s' % pagekey = self.md5(page_url)if key not in self.has_request_set:self.has_request_set[key] = page_urlobj = Request(url=page_url, method='GET', callback=self.parse)yield obj@staticmethoddef md5(val):import hashlibha = hashlib.md5()ha.update(bytes(val, encoding='utf-8'))key = ha.hexdigest()return key
执行此爬虫文件,则在终端进入项目目录执行如下命令:
scrapy crawl dig --nolog # nolog 表示不打印日志
对于上述代码重要之处在于:
- Request是一个封装用户请求的类,在回调函数中yield该对象表示继续访问
- HtmlXpathSelector用于结构化HTML代码并提供选择器功能
4. 选择器
xpath的路径表达式:
表达式 | 描述 |
---|---|
nodename | 选取此节点的所有子节点。 |
/ | 从根节点选取。 |
// | 从匹配选择的当前节点选择文档中的节点,而不考虑它们的位置。 |
. | 选取当前节点。 |
.. | 选取当前节点的父节点。 |
@ | 选取属性。 |
在下面的表格中,列出了一些路径表达式以及表达式的结果:
路径表达式 | 结果 |
---|---|
bookstore | 选取 bookstore 元素的所有子节点。 |
/bookstore | 选取根元素 bookstore。 注释:假如路径起始于正斜杠( / ),则此路径始终代表到某元素的绝对路径! |
bookstore/book | 选取属于 bookstore 的子元素的所有 book 元素。 |
//book | 选取所有 book 子元素,而不管它们在文档中的位置。 |
bookstore//book | 选择属于 bookstore 元素的后代的所有 book 元素,而不管它们位于 bookstore 之下的什么位置。 |
//@lang | 选取名为 lang 的所有属性。 |
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from scrapy.selector import Selector, HtmlXPathSelector # 新版好像已弃,使用Selector,用法和这个一样
from scrapy.http import HtmlResponse
html = """<!DOCTYPE html>
<html><head lang="en"><meta charset="UTF-8"><title></title></head><body><ul><li class="item-"><a id='i1' href="link.html">first item</a></li><li class="item-0"><a id='i2' href="llink.html">first item</a></li><li class="item-1"><a href="llink2.html">second item<span>vv</span></a></li></ul><div><a href="llink2.html">second item</a></div></body>
</html>
"""response = HtmlResponse(url='http://example.com', body=html,encoding='utf-8')
# hxs = HtmlXPathSelector(response)
# print(hxs)
# hxs = Selector(response=response).xpath('//a') # 从根目录下查找所有 a 元素
# print(hxs)
# hxs = Selector(response=response).xpath('//a[2]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@id]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@id="i1"]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@href="link.html"][@id="i1"]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[contains(@href, "link")]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[starts-with(@href, "link")]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/text()').extract()
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/@href').extract()
# print(hxs)
# hxs = Selector(response=response).xpath('/html/body/ul/li/a/@href').extract()
# print(hxs)
# hxs = Selector(response=response).xpath('//body/ul/li/a/@href').extract_first()
# print(hxs)
# ul_list = Selector(response=response).xpath('//body/ul/li')
# for item in ul_list:
# v = item.xpath('./a/span')
# # 或
# # v = item.xpath('a/span')
# # 或
# # v = item.xpath('*/a/span')
# print(v)
示例:自动登陆抽屉并点赞
# -*- coding: utf-8 -*-
import scrapy
from scrapy.selector import HtmlXPathSelector
from scrapy.http.request import Request
from scrapy.http.cookies import CookieJar
from scrapy import FormRequestclass ChouTiSpider(scrapy.Spider):# 爬虫应用的名称,通过此名称启动爬虫命令name = "chouti"# 允许的域名allowed_domains = ["chouti.com"]cookie_dict = {}has_request_set = {}def start_requests(self):url = 'http://dig.chouti.com/'# return [Request(url=url, callback=self.login)]yield Request(url=url, callback=self.login)def login(self, response):cookie_jar = CookieJar()cookie_jar.extract_cookies(response, response.request)for k, v in cookie_jar._cookies.items():for i, j in v.items():for m, n in j.items():self.cookie_dict[m] = n.valuereq = Request(url='http://dig.chouti.com/login',method='POST',headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'},body='phone=8615131255089&password=pppppppp&oneMonth=1',cookies=self.cookie_dict,callback=self.check_login)yield reqdef check_login(self, response):req = Request(url='http://dig.chouti.com/',method='GET',callback=self.show,cookies=self.cookie_dict,dont_filter=True)yield reqdef show(self, response):# print(response)hxs = HtmlXPathSelector(response)news_list = hxs.select('//div[@id="content-list"]/div[@class="item"]')for new in news_list:# temp = new.xpath('div/div[@class="part2"]/@share-linkid').extract()link_id = new.xpath('*/div[@class="part2"]/@share-linkid').extract_first()yield Request(url='http://dig.chouti.com/link/vote?linksId=%s' %(link_id,),method='POST',cookies=self.cookie_dict,callback=self.do_favor)page_list = hxs.select('//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/\d+")]/@href').extract()for page in page_list:page_url = 'http://dig.chouti.com%s' % pageimport hashlibhash = hashlib.md5()hash.update(bytes(page_url,encoding='utf-8'))key = hash.hexdigest()if key in self.has_request_set:passelse:self.has_request_set[key] = page_urlyield Request(url=page_url,method='GET',callback=self.show)def do_favor(self, response):print(response.text)
处理Cookie
# -*- coding: utf-8 -*-
import scrapy
from scrapy.http.response.html import HtmlResponse
from scrapy.http import Request
from scrapy.http.cookies import CookieJarclass ChoutiSpider(scrapy.Spider):name = "chouti"allowed_domains = ["chouti.com"]start_urls = ('http://www.chouti.com/',)def start_requests(self):url = 'http://dig.chouti.com/'yield Request(url=url, callback=self.login, meta={'cookiejar': True})def login(self, response):print(response.headers.getlist('Set-Cookie'))req = Request(url='http://dig.chouti.com/login',method='POST',headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'},body='phone=8613121758648&password=woshiniba&oneMonth=1',callback=self.check_login,meta={'cookiejar': True})yield reqdef check_login(self, response):print(response.text)
注意:settings.py中设置DEPTH_LIMIT = 1来指定“递归”的层数。
5. 格式化处理 pipelines
上述实例只是简单的处理,所以在parse方法中直接处理。如果对于想要获取更多的数据处理,则可以利用Scrapy的items将数据格式化,然后统一交由pipelines来处理。
spiders/xiahuar.py
import scrapy
from scrapy.selector import HtmlXPathSelector
from scrapy.http.request import Request
from scrapy.http.cookies import CookieJar
from scrapy import FormRequestclass XiaoHuarSpider(scrapy.Spider):name = "xiaohuar"allowed_domains = ["xiaohuar.com"]start_urls = ["http://www.xiaohuar.com/list-1-1.html",]# setting 中的配置pipelines# custom_settings = {# 'ITEM_PIPELINES':{# 'spider1.pipelines.JsonPipeline': 100# }# }has_request_set = {}def parse(self, response):# 分析页面# 找到页面中符合规则的内容(校花图片),保存# 找到所有的a标签,再访问其他a标签,一层一层的搞下去hxs = HtmlXPathSelector(response)items = hxs.select('//div[@class="item_list infinite_scroll"]/div')for item in items:src = item.select('.//div[@class="img"]/a/img/@src').extract_first()name = item.select('.//div[@class="img"]/span/text()').extract_first()school = item.select('.//div[@class="img"]/div[@class="btns"]/a/text()').extract_first()url = "http://www.xiaohuar.com%s" % srcfrom ..items import XiaoHuarItemobj = XiaoHuarItem(name=name, school=school, url=url)yield objurls = hxs.select('//a[re:test(@href, "http://www.xiaohuar.com/list-1-\d+.html")]/@href')for url in urls:key = self.md5(url)if key in self.has_request_set:passelse:self.has_request_set[key] = urlreq = Request(url=url,method='GET',callback=self.parse)yield req@staticmethoddef md5(val):import hashlibha = hashlib.md5()ha.update(bytes(val, encoding='utf-8'))key = ha.hexdigest()return key
items
import scrapyclass XiaoHuarItem(scrapy.Item):name = scrapy.Field()school = scrapy.Field()url = scrapy.Field()
pipelines
import json
import os
import requestsclass JsonPipeline(object):def __init__(self):self.file = open('xiaohua.txt', 'w')def process_item(self, item, spider):v = json.dumps(dict(item), ensure_ascii=False)self.file.write(v)self.file.write('\n')self.file.flush()return itemclass FilePipeline(object):def __init__(self):if not os.path.exists('imgs'):os.makedirs('imgs')def process_item(self, item, spider):response = requests.get(item['url'], stream=True)file_name = '%s_%s.jpg' % (item['name'], item['school'])with open(os.path.join('imgs', file_name), mode='wb') as f:f.write(response.content)return item
settings
ITEM_PIPELINES = {'spider1.pipelines.JsonPipeline': 100,'spider1.pipelines.FilePipeline': 300,
}
# 后面的整数值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内。
对于pipeline可以做更多,如下:
自定义pipeline格式
from scrapy.exceptions import DropItemclass CustomPipeline(object):def __init__(self,v):self.value = vdef process_item(self, item, spider):# 运行pipeline时会调用此函数,操作并进行持久化# return表示会被后续的pipeline继续处理return item# 表示将item丢弃,不会被后续pipeline处理# raise DropItem()@classmethoddef from_crawler(cls, crawler):# 初始化时候,用于创建pipeline对象val = crawler.settings.getint('MMMM')return cls(val)def open_spider(self,spider):# 爬虫开始执行时,调用print('000000')def close_spider(self,spider):# 爬虫关闭时,被调用print('111111')
6.中间件
爬虫中间件
class SpiderMiddleware(object):def process_spider_input(self,response, spider):"""下载完成,执行,然后交给parse处理:param response: :param spider: :return: """passdef process_spider_output(self,response, result, spider):"""spider处理完成,返回时调用:param response::param result::param spider::return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)"""return resultdef process_spider_exception(self,response, exception, spider):"""异常调用:param response::param exception::param spider::return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline"""return Nonedef process_start_requests(self,start_requests, spider):"""爬虫启动时调用:param start_requests::param spider::return: 包含 Request 对象的可迭代对象"""return start_requests
下载器中间件
class DownMiddleware1(object):def process_request(self, request, spider):"""请求需要被下载时,经过所有下载器中间件的process_request调用:param request: :param spider: :return: None,继续后续中间件去下载;Response对象,停止process_request的执行,开始执行process_responseRequest对象,停止中间件的执行,将Request重新调度器raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception"""passdef process_response(self, request, response, spider):"""spider处理完成,返回时调用:param response::param result::param spider::return: Response 对象:转交给其他中间件process_responseRequest 对象:停止中间件,request会被重新调度下载raise IgnoreRequest 异常:调用Request.errback"""print('response1')return responsedef process_exception(self, request, exception, spider):"""当下载处理器(download handler)或 process_request() (下载中间件)抛出异常:param response::param exception::param spider::return: None:继续交给后续中间件处理异常;Response对象:停止后续process_exception方法Request对象:停止中间件,request将会被重新调用下载"""return None
7. 自定制命令
- 在spiders同级创建任意目录,如:commands
- 在其中创建 crawlall.py 文件 (此处文件名就是自定义的命令)
crawlall.py
from scrapy.commands import ScrapyCommand
from scrapy.utils.project import get_project_settingsclass Command(ScrapyCommand):requires_project = Truedef syntax(self): # 命令的参数return '[options]'def short_desc(self): # 命令的描述return 'Runs all of the spiders'def run(self, args, opts):spider_list = self.crawler_process.spiders.list()for name in spider_list:self.crawler_process.crawl(name, **opts.__dict__)self.crawler_process.start()
- 在settings.py 中添加配置 COMMANDS_MODULE = '项目名称.目录名称'
- 在项目目录执行命令:scrapy crawlall
单个爬虫
import sys
from scrapy.cmdline import executeif __name__ == '__main__':execute(["scrapy","github","--nolog"])
8. 自定义扩展
自定义扩展时,利用信号在指定位置注册制定操作
from scrapy import signalsclass MyExtension(object):def __init__(self, value):self.value = value@classmethoddef from_crawler(cls, crawler):val = crawler.settings.getint('MMMM')ext = cls(val)# 注册信号crawler.signals.connect(ext.spider_opened, signal=signals.spider_opened)crawler.signals.connect(ext.spider_closed, signal=signals.spider_closed)return extdef spider_opened(self, spider):print('open')def spider_closed(self, spider):print('close')
9. 避免重复访问
scrapy默认使用 scrapy.dupefilter.RFPDupeFilter 进行去重,相关配置有:
DUPEFILTER_CLASS = 'scrapy.dupefilter.RFPDupeFilter'
DUPEFILTER_DEBUG = False
JOBDIR = "保存范文记录的日志路径,如:/root/" # 最终路径为 /root/requests.seen
自定义URL去重操作
class RepeatUrl:def __init__(self):self.visited_url = set()@classmethoddef from_settings(cls, settings):"""初始化时,调用:param settings: :return: """return cls()def request_seen(self, request):"""检测当前请求是否已经被访问过:param request: :return: True表示已经访问过;False表示未访问过"""if request.url in self.visited_url:return Trueself.visited_url.add(request.url)return Falsedef open(self):"""开始爬取请求时,调用:return: """print('open replication')def close(self, reason):"""结束爬虫爬取时,调用:param reason: :return: """print('close replication')def log(self, request, spider):"""记录日志:param request: :param spider: :return: """print('repeat', request.url)
10.其他
settings
# -*- coding: utf-8 -*-# Scrapy settings for step8_king project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
# http://doc.scrapy.org/en/latest/topics/settings.html
# http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
# http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html# 1. 爬虫名称
BOT_NAME = 'step8_king'# 2. 爬虫应用路径
SPIDER_MODULES = ['step8_king.spiders']
NEWSPIDER_MODULE = 'step8_king.spiders'# Crawl responsibly by identifying yourself (and your website) on the user-agent
# 3. 客户端 user-agent请求头
# USER_AGENT = 'step8_king (+http://www.yourdomain.com)'# Obey robots.txt rules
# 4. 禁止爬虫配置,应该开启,看看是否允许
# ROBOTSTXT_OBEY = False# Configure maximum concurrent requests performed by Scrapy (default: 16)
# 5. 并发请求数
# CONCURRENT_REQUESTS = 4# Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
# 6. 延迟下载秒数
# DOWNLOAD_DELAY = 2# The download delay setting will honor only one of:
# 7. 单域名访问并发数,并且延迟下次秒数也应用在每个域名
# CONCURRENT_REQUESTS_PER_DOMAIN = 2
# 单IP访问并发数,如果有值则忽略:CONCURRENT_REQUESTS_PER_DOMAIN,并且延迟下次秒数也应用在每个IP
# CONCURRENT_REQUESTS_PER_IP = 3# Disable cookies (enabled by default)
# 8. 是否支持cookie,cookiejar进行操作cookie
# COOKIES_ENABLED = True
# COOKIES_DEBUG = True# Disable Telnet Console (enabled by default)
# 9. Telnet用于查看当前爬虫的信息,操作爬虫等...
# 使用telnet ip port ,然后通过命令操作
# TELNETCONSOLE_ENABLED = True
# TELNETCONSOLE_HOST = '127.0.0.1'
# TELNETCONSOLE_PORT = [6023,]# 10. 默认请求头
# Override the default request headers:
# DEFAULT_REQUEST_HEADERS = {
# 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
# 'Accept-Language': 'en',
# }# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
# 11. 定义pipeline处理请求
# ITEM_PIPELINES = {
# 'step8_king.pipelines.JsonPipeline': 700,
# 'step8_king.pipelines.FilePipeline': 500,
# }# 12. 自定义扩展,基于信号进行调用
# Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
# EXTENSIONS = {
# # 'step8_king.extensions.MyExtension': 500,
# }# 13. 爬虫允许的最大深度,可以通过meta查看当前深度;0表示无深度
# DEPTH_LIMIT = 3# 14. 爬取时,0表示深度优先Lifo(默认);1表示广度优先FiFo# 后进先出,深度优先
# DEPTH_PRIORITY = 0
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleLifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.LifoMemoryQueue'
# 先进先出,广度优先# DEPTH_PRIORITY = 1
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.FifoMemoryQueue'# 15. 调度器队列
# SCHEDULER = 'scrapy.core.scheduler.Scheduler'
# from scrapy.core.scheduler import Scheduler# 16. 访问URL去重
# DUPEFILTER_CLASS = 'step8_king.duplication.RepeatUrl'# Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html"""
17. 自动限速算法from scrapy.contrib.throttle import AutoThrottle自动限速设置1. 获取最小延迟 DOWNLOAD_DELAY2. 获取最大延迟 AUTOTHROTTLE_MAX_DELAY3. 设置初始下载延迟 AUTOTHROTTLE_START_DELAY4. 当请求下载完成后,获取其"连接"时间 latency,即:请求连接到接受到响应头之间的时间5. 用于计算的... AUTOTHROTTLE_TARGET_CONCURRENCYtarget_delay = latency / self.target_concurrencynew_delay = (slot.delay + target_delay) / 2.0 # 表示上一次的延迟时间new_delay = max(target_delay, new_delay)new_delay = min(max(self.mindelay, new_delay), self.maxdelay)slot.delay = new_delay
"""# 开始自动限速
# AUTOTHROTTLE_ENABLED = True
# The initial download delay
# 初始下载延迟
# AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
# 最大下载延迟
# AUTOTHROTTLE_MAX_DELAY = 10
# The average number of requests Scrapy should be sending in parallel to each remote server
# 平均每秒并发数
# AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0# Enable showing throttling stats for every response received:
# 是否显示
# AUTOTHROTTLE_DEBUG = True# Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings"""
18. 启用缓存目的用于将已经发送的请求或相应缓存下来,以便以后使用from scrapy.downloadermiddlewares.httpcache import HttpCacheMiddlewarefrom scrapy.extensions.httpcache import DummyPolicyfrom scrapy.extensions.httpcache import FilesystemCacheStorage
"""
# 是否启用缓存策略
# HTTPCACHE_ENABLED = True# 缓存策略:所有请求均缓存,下次在请求直接访问原来的缓存即可
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.DummyPolicy"
# 缓存策略:根据Http响应头:Cache-Control、Last-Modified 等进行缓存的策略
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.RFC2616Policy"# 缓存超时时间
# HTTPCACHE_EXPIRATION_SECS = 0# 缓存保存路径
# HTTPCACHE_DIR = 'httpcache'# 缓存忽略的Http状态码
# HTTPCACHE_IGNORE_HTTP_CODES = []# 缓存存储的插件
# HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'"""
19. 代理,需要在环境变量中设置from scrapy.contrib.downloadermiddleware.httpproxy import HttpProxyMiddleware方式一:使用默认os.environ{http_proxy:http://root:woshiniba@192.168.11.11:9999/https_proxy:http://192.168.11.11:9999/}方式二:使用自定义下载中间件def to_bytes(text, encoding=None, errors='strict'):if isinstance(text, bytes):return textif not isinstance(text, six.string_types):raise TypeError('to_bytes must receive a unicode, str or bytes ''object, got %s' % type(text).__name__)if encoding is None:encoding = 'utf-8'return text.encode(encoding, errors)class ProxyMiddleware(object):def process_request(self, request, spider):PROXIES = [{'ip_port': '111.11.228.75:80', 'user_pass': ''},{'ip_port': '120.198.243.22:80', 'user_pass': ''},{'ip_port': '111.8.60.9:8123', 'user_pass': ''},{'ip_port': '101.71.27.120:80', 'user_pass': ''},{'ip_port': '122.96.59.104:80', 'user_pass': ''},{'ip_port': '122.224.249.122:8088', 'user_pass': ''},]proxy = random.choice(PROXIES)if proxy['user_pass'] is not None:request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port'])encoded_user_pass = base64.encodestring(to_bytes(proxy['user_pass']))request.headers['Proxy-Authorization'] = to_bytes('Basic ' + encoded_user_pass)print "**************ProxyMiddleware have pass************" + proxy['ip_port']else:print "**************ProxyMiddleware no pass************" + proxy['ip_port']request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port'])DOWNLOADER_MIDDLEWARES = {'step8_king.middlewares.ProxyMiddleware': 500,}""""""
20. Https访问Https访问时有两种情况:1. 要爬取网站使用的可信任证书(默认支持)DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"DOWNLOADER_CLIENTCONTEXTFACTORY = "scrapy.core.downloader.contextfactory.ScrapyClientContextFactory"2. 要爬取网站使用的自定义证书DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"DOWNLOADER_CLIENTCONTEXTFACTORY = "step8_king.https.MySSLFactory"# https.pyfrom scrapy.core.downloader.contextfactory import ScrapyClientContextFactoryfrom twisted.internet.ssl import (optionsForClientTLS, CertificateOptions, PrivateCertificate)class MySSLFactory(ScrapyClientContextFactory):def getCertificateOptions(self):from OpenSSL import cryptov1 = crypto.load_privatekey(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.key.unsecure', mode='r').read())v2 = crypto.load_certificate(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.pem', mode='r').read())return CertificateOptions(privateKey=v1, # pKey对象certificate=v2, # X509对象verify=False,method=getattr(self, 'method', getattr(self, '_ssl_method', None)))其他:相关类scrapy.core.downloader.handlers.http.HttpDownloadHandlerscrapy.core.downloader.webclient.ScrapyHTTPClientFactoryscrapy.core.downloader.contextfactory.ScrapyClientContextFactory相关配置DOWNLOADER_HTTPCLIENTFACTORYDOWNLOADER_CLIENTCONTEXTFACTORY""""""
21. 爬虫中间件class SpiderMiddleware(object):def process_spider_input(self,response, spider):'''下载完成,执行,然后交给parse处理:param response: :param spider: :return: '''passdef process_spider_output(self,response, result, spider):'''spider处理完成,返回时调用:param response::param result::param spider::return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)'''return resultdef process_spider_exception(self,response, exception, spider):'''异常调用:param response::param exception::param spider::return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline'''return Nonedef process_start_requests(self,start_requests, spider):'''爬虫启动时调用:param start_requests::param spider::return: 包含 Request 对象的可迭代对象'''return start_requests内置爬虫中间件:'scrapy.contrib.spidermiddleware.httperror.HttpErrorMiddleware': 50,'scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware': 500,'scrapy.contrib.spidermiddleware.referer.RefererMiddleware': 700,'scrapy.contrib.spidermiddleware.urllength.UrlLengthMiddleware': 800,'scrapy.contrib.spidermiddleware.depth.DepthMiddleware': 900,"""
# from scrapy.contrib.spidermiddleware.referer import RefererMiddleware
# Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
SPIDER_MIDDLEWARES = {# 'step8_king.middlewares.SpiderMiddleware': 543,
}"""
22. 下载中间件class DownMiddleware1(object):def process_request(self, request, spider):'''请求需要被下载时,经过所有下载器中间件的process_request调用:param request::param spider::return:None,继续后续中间件去下载;Response对象,停止process_request的执行,开始执行process_responseRequest对象,停止中间件的执行,将Request重新调度器raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception'''passdef process_response(self, request, response, spider):'''spider处理完成,返回时调用:param response::param result::param spider::return:Response 对象:转交给其他中间件process_responseRequest 对象:停止中间件,request会被重新调度下载raise IgnoreRequest 异常:调用Request.errback'''print('response1')return responsedef process_exception(self, request, exception, spider):'''当下载处理器(download handler)或 process_request() (下载中间件)抛出异常:param response::param exception::param spider::return:None:继续交给后续中间件处理异常;Response对象:停止后续process_exception方法Request对象:停止中间件,request将会被重新调用下载'''return None默认下载中间件{'scrapy.contrib.downloadermiddleware.robotstxt.RobotsTxtMiddleware': 100,'scrapy.contrib.downloadermiddleware.httpauth.HttpAuthMiddleware': 300,'scrapy.contrib.downloadermiddleware.downloadtimeout.DownloadTimeoutMiddleware': 350,'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': 400,'scrapy.contrib.downloadermiddleware.retry.RetryMiddleware': 500,'scrapy.contrib.downloadermiddleware.defaultheaders.DefaultHeadersMiddleware': 550,'scrapy.contrib.downloadermiddleware.redirect.MetaRefreshMiddleware': 580,'scrapy.contrib.downloadermiddleware.httpcompression.HttpCompressionMiddleware': 590,'scrapy.contrib.downloadermiddleware.redirect.RedirectMiddleware': 600,'scrapy.contrib.downloadermiddleware.cookies.CookiesMiddleware': 700,'scrapy.contrib.downloadermiddleware.httpproxy.HttpProxyMiddleware': 750,'scrapy.contrib.downloadermiddleware.chunked.ChunkedTransferMiddleware': 830,'scrapy.contrib.downloadermiddleware.stats.DownloaderStats': 850,'scrapy.contrib.downloadermiddleware.httpcache.HttpCacheMiddleware': 900,}"""
# from scrapy.contrib.downloadermiddleware.httpauth import HttpAuthMiddleware
# Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
# DOWNLOADER_MIDDLEWARES = {
# 'step8_king.middlewares.DownMiddleware1': 100,
# 'step8_king.middlewares.DownMiddleware2': 500,
# }
此文为转载https://www.cnblogs.com/wupeiqi/articles/6229292.html