PyTorch模型性能分析与优化

动动发财的小手,点个赞吧!

训练深度学习模型,尤其是大型模型,可能是一项昂贵的支出。我们可以使用的管理这些成本的主要方法之一是性能优化。性能优化是一个迭代过程,我们不断寻找提高应用程序性能的机会,然后利用这些机会。在之前的文章中(例如此处),我们强调了拥有适当工具来进行此分析的重要性。工具的选择可能取决于许多因素,包括训练加速器的类型(例如 GPU、HPU 或其他)和训练框架。

alt

本文[1]的重点是在 GPU 上使用 PyTorch 进行训练。更具体地说,我们将重点关注 PyTorch 的内置性能分析器 PyTorch Profiler,以及查看其结果的方法之一,PyTorch Profiler TensorBoard 插件。

这篇文章并不是要取代有关 PyTorch Profiler 的官方 PyTorch 文档或使用 TensorBoard 插件来分析分析器结果。我们的目的是展示如何在日常开发过程中使用这些工具。

一段时间以来,我对 TensorBoard 插件教程的一个部分特别感兴趣。本教程介绍了一个在流行的 Cifar10 数据集上训练的分类模型(基于 Resnet 架构)。接下来演示如何使用 PyTorch Profiler 和 TensorBoard 插件来识别和修复数据加载器中的瓶颈。

alt

如果仔细观察,你会发现优化后的GPU利用率为40.46%。现在没有办法粉饰这一点:这些结果绝对是糟糕的,应该让你彻夜难眠。正如我们过去所扩展的,GPU 是我们训练机器中最昂贵的资源,我们的目标应该是最大化其利用率。 40.46% 的利用率结果通常代表着加速训练和节省成本的重要机会。当然,我们可以做得更好!在这篇博文中,我们将努力做得更好。我们将首先尝试重现官方教程中提供的结果,看看我们是否可以使用相同的工具来进一步提高训练性能。

玩具示例

下面的代码块包含 TensorBoard 插件教程定义的训练循环,并进行了两处小修改:

  1. 我们使用与本教程中使用的 CIFAR10 数据集具有相同属性和行为的假数据集。
  2. 我们初始化 torch.profiler.schedule,将预热标志设置为 3,将重复标志设置为 1。我们发现,预热步骤数量的轻微增加提高了分析结果的稳定性。
import numpy as np
import torch
import torch.nn
import torch.optim
import torch.profiler
import torch.utils.data
import torchvision.datasets
import torchvision.models
import torchvision.transforms as T
from torchvision.datasets.vision import VisionDataset
from PIL import Image

class FakeCIFAR(VisionDataset):
    def __init__(self, transform):
        super().__init__(root=None, transform=transform)
        self.data = np.random.randint(low=0,high=256,size=(10000,32,32,3),dtype=np.uint8)
        self.targets = np.random.randint(low=0,high=10,size=(10000),dtype=np.uint8).tolist()

    def __getitem__(self, index):
        img, target = self.data[index], self.targets[index]
        img = Image.fromarray(img)
        if self.transform is not None:
            img = self.transform(img)
        return img, target

    def __len__(self) -> int:
        return len(self.data)

transform = T.Compose(
    [T.Resize(224),
     T.ToTensor(),
     T.Normalize((0.50.50.5), (0.50.50.5))])

train_set = FakeCIFAR(transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=32
                                           shuffle=True)

device = torch.device("cuda:0")
model = torchvision.models.resnet18(weights='IMAGENET1K_V1').cuda(device)
criterion = torch.nn.CrossEntropyLoss().cuda(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
model.train()

# train step
def train(data):
    inputs, labels = data[0].to(device=device), data[1].to(device=device)
    outputs = model(inputs)
    loss = criterion(outputs, labels)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

# training loop wrapped with profiler object
with torch.profiler.profile(
        schedule=torch.profiler.schedule(wait=1, warmup=4, active=3, repeat=1),
        on_trace_ready=torch.profiler.tensorboard_trace_handler('./log/resnet18'),
        record_shapes=True,
        profile_memory=True,
        with_stack=True
as prof:
    for step, batch_data in enumerate(train_loader):
        if step >= (1 + 4 + 3) * 1:
            break
        train(batch_data)
        prof.step()  # Need to call this at the end of each step

本教程中使用的 GPU 是 Tesla V100-DGXS-32GB。在这篇文章中,我们尝试使用包含 Tesla V100-SXM2–16GB GPU 的 Amazon EC2 p3.2xlarge 实例重现本教程的性能结果并进行改进。尽管它们共享相同的架构,但这两种 GPU 之间存在一些差异。我们使用 AWS PyTorch 2.0 Docker 映像运行训练脚本。 TensorBoard 查看器概述页面中显示的训练脚本的性能结果如下图所示:

alt

我们首先注意到,与教程相反,我们实验中的概述页面(torch-tb-profiler 版本 0.4.1)将三个分析步骤合并为一个。因此,平均总步时间为 80 毫秒,而不是报告的 240 毫秒。这可以在“跟踪”选项卡中清楚地看到(根据我们的经验,该选项卡几乎总是提供更准确的报告),其中每个步骤大约需要 80 毫秒。

alt

请注意,我们的起始点为 31.65% GPU 利用率和 80 毫秒的步长时间,与教程中分别介绍的 23.54% 和 132 毫秒的起始点不同。这可能是由于训练环境(包括 GPU 类型和 PyTorch 版本)的差异造成的。我们还注意到,虽然教程基线结果清楚地将性能问题诊断为 DataLoader 中的瓶颈,但我们的结果却并非如此。我们经常发现数据加载瓶颈会在“概览”选项卡中将自己伪装成高比例的“CPU Exec”或“其他”。

优化1:多进程数据加载

让我们首先应用本教程中所述的多进程数据加载。由于 Amazon EC2 p3.2xlarge 实例有 8 个 vCPU,我们将 DataLoader 工作线程的数量设置为 8 以获得最大性能:

train_loader = torch.utils.data.DataLoader(train_set, batch_size=32
                               shuffle=True, num_workers=8)

本次优化的结果如下所示:

alt

对单行代码的更改使 GPU 利用率提高了 200% 以上(从 31.65% 增加到 72.81%),并将训练步骤时间减少了一半以上(从 80 毫秒减少到 37 毫秒)。

本教程中的优化过程到此结束。虽然我们的 GPU 利用率 (72.81%) 比教程中的结果 (40.46%) 高很多,但我毫不怀疑,像我们一样,您会发现这些结果仍然非常不令人满意。

个人评论,您可以随意跳过:想象一下,如果 PyTorch 在 GPU 上训练时默认应用多进程数据加载,可以节省多少全球资金!确实,使用多重处理可能会产生一些不需要的副作用。尽管如此,必须有某种形式的自动检测算法可以运行,以排除识别潜在问题场景的存在,并相应地应用此优化。

优化2:内存固定

如果我们分析上次实验的 Trace 视图,我们可以看到大量时间(37 毫秒中的 10 毫秒)仍然花费在将训练数据加载到 GPU 上。

alt

为了解决这个问题,我们将应用 PyTorch 推荐的另一个优化来简化数据输入流,即内存固定。使用固定内存可以提高主机到 GPU 数据复制的速度,更重要的是,允许我们使它们异步。这意味着我们可以在 GPU 中准备下一个训练批次,同时在当前批次上运行训练步骤。有关更多详细信息以及内存固定的潜在副作用,请参阅 PyTorch 文档。

此优化需要更改两行代码。首先,我们将 DataLoader 的 pin_memory 标志设置为 True。

train_loader = torch.utils.data.DataLoader(train_set, batch_size=32
                          shuffle=True, num_workers=8, pin_memory=True)

然后我们将主机到设备的内存传输(在训练函数中)修改为非阻塞:

inputs, labels = data[0].to(device=device, non_blocking=True), \
                 data[1].to(device=device, non_blocking=True)

内存固定优化的结果如下所示:

alt

我们的 GPU 利用率现在达到了可观的 92.37%,并且我们的步数时间进一步减少。但我们仍然可以做得更好。请注意,尽管进行了这种优化,性能报告仍然表明我们花费了大量时间将数据复制到 GPU 中。我们将在下面的步骤 4 中再次讨论这一点。

优化3:增加批量大小

对于我们的下一个优化,我们将注意力集中在上一个实验的内存视图上:

alt

该图表显示,在 16 GB 的 GPU 内存中,我们的利用率峰值低于 1 GB。这是资源利用不足的一个极端例子,通常(尽管并非总是)表明有提高性能的机会。控制内存利用率的一种方法是增加批处理大小。在下图中,我们显示了将批处理大小增加到 512(内存利用率增加到 11.3 GB)时的性能结果。

alt

虽然 GPU 利用率指标没有太大变化,但我们的训练速度显着提高,从每秒 1200 个样本(批量大小 32 为 46 毫秒)到每秒 1584 个样本(批量大小 512 为 324 毫秒)。

注意:与我们之前的优化相反,增加批量大小可能会对训练应用程序的行为产生影响。不同的模型对批量大小的变化表现出不同程度的敏感度。有些可能只需要对优化器设置进行一些调整即可。对于其他人来说,调整到大批量可能会更困难甚至不可能。请参阅上一篇文章,了解大批量训练中涉及的一些挑战。

优化4:减少主机到设备的复制

您可能注意到了我们之前的结果中饼图中代表主机到设备数据副本的红色大碍眼。解决这种瓶颈最直接的方法就是看看是否可以减少每批的数据量。请注意,在图像输入的情况下,我们将数据类型从 8 位无符号整数转换为 32 位浮点数,并在执行数据复制之前应用归一化。在下面的代码块中,我们建议对输入数据流进行更改,其中我们延迟数据类型转换和规范化,直到数据位于 GPU 上:

# maintain the image input as an 8-bit uint8 tensor
transform = T.Compose(
    [T.Resize(224),
     T.PILToTensor()
     ])
train_set = FakeCIFAR(transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=1024, shuffle=True, num_workers=8, pin_memory=True)

device = torch.device("cuda:0")
model = torch.compile(torchvision.models.resnet18(weights='IMAGENET1K_V1').cuda(device), fullgraph=True)
criterion = torch.nn.CrossEntropyLoss().cuda(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
model.train()

# train step
def train(data):
    inputs, labels = data[0].to(device=device, non_blocking=True), \
                     data[1].to(device=device, non_blocking=True)
    # convert to float32 and normalize
    inputs = (inputs.to(torch.float32) / 255. - 0.5) / 0.5
    outputs = model(inputs)
    loss = criterion(outputs, labels)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

由于这一变化,从 CPU 复制到 GPU 的数据量减少了 4 倍,并且红色碍眼的现象几乎消失了:

alt

我们现在的 GPU 利用率达到新高,达到 97.51%(!!),训练速度达到每秒 1670 个样本!让我们看看我们还能做什么。

优化5:将渐变设置为“无”

在这个阶段,我们似乎充分利用了 GPU,但这并不意味着我们不能更有效地利用它。一种流行的优化据说可以减少 GPU 中的内存操作,即在每个训练步骤中将模型参数梯度设置为 None 而不是零。有关此优化的更多详细信息,请参阅 PyTorch 文档。实现此优化所需要做的就是将optimizer.zero_grad调用的set_to_none设置为True:

optimizer.zero_grad(set_to_none=True)

在我们的例子中,这种优化并没有以任何有意义的方式提高我们的性能。

优化6:自动混合精度

GPU 内核视图显示 GPU 内核处于活动状态的时间量,并且可以成为提高 GPU 利用率的有用资源:

alt

该报告中最引人注目的细节之一是未使用 GPU Tensor Core。 Tensor Core 可在相对较新的 GPU 架构上使用,是用于矩阵乘法的专用处理单元,可以显着提高 AI 应用程序性能。它们的缺乏使用可能代表着优化的主要机会。

由于 Tensor Core 是专门为混合精度计算而设计的,因此提高其利用率的一种直接方法是修改我们的模型以使用自动混合精度(AMP)。在 AMP 模式下,模型的部分会自动转换为较低精度的 16 位浮点并在 GPU TensorCore 上运行。

重要的是,请注意,AMP 的完整实现可能需要梯度缩放,但我们的演示中并未包含该梯度缩放。在进行调整之前,请务必查看有关混合精度训练的文档。

下面的代码块演示了启用 AMP 所需的训练步骤的修改。

def train(data):
    inputs, labels = data[0].to(device=device, non_blocking=True), \
                     data[1].to(device=device, non_blocking=True)
    inputs = (inputs.to(torch.float32) / 255. - 0.5) / 0.5
    with torch.autocast(device_type='cuda', dtype=torch.float16):
        outputs = model(inputs)
        loss = criterion(outputs, labels)
    # Note - torch.cuda.amp.GradScaler() may be required  
    optimizer.zero_grad(set_to_none=True)
    loss.backward()
    optimizer.step()

对 Tensor Core 利用率的影响如下图所示。尽管它继续表明有进一步改进的机会,但仅用一行代码,利用率就从 0% 跃升至 26.3%。

alt

除了提高 Tensor Core 利用率之外,使用 AMP 还可以降低 GPU 内存利用率,从而释放更多空间来增加批处理大小。下图捕获了 AMP 优化且批量大小设置为 1024 后的训练性能结果:

alt

尽管 GPU 利用率略有下降,但我们的主要吞吐量指标进一步增加了近 50%,从每秒 1670 个样本增加到 2477 个样本。我们正在发挥作用!

注意:降低模型部分的精度可能对其收敛产生有意义的影响。与增加批量大小(见上文)的情况一样,使用混合精度的影响会因模型而异。在某些情况下,AMP 会毫不费力地工作。其他时候,您可能需要更加努力地调整自动缩放器。还有一些时候,您可能需要显式设置模型不同部分的精度类型(即手动混合精度)。

优化7:在图形模式下训练

我们将应用的最终优化是模型编译。与默认的 PyTorch 急切执行模式相反,其中每个 PyTorch 操作都“急切”运行,编译 API 将模型转换为中间计算图,然后以最适合底层的方式编译为低级计算内核。

以下代码块演示了应用模型编译所需的更改:

model = torchvision.models.resnet18(weights='IMAGENET1K_V1').cuda(device)
model = torch.compile(model)

模型编译优化结果如下所示:

alt

与之前实验中的 2477 个样本相比,模型编译进一步将我们的吞吐量提高到每秒 3268 个样本,性能额外提升了 32% (!!)。

图编译改变训练步骤的方式在 TensorBoard 插件的不同视图中非常明显。例如,内核视图表明使用了新的(融合的)GPU 内核,而跟踪视图(如下所示)显示了与我们之前看到的完全不同的模式。

alt

总结

在这篇文章中,我们展示了玩具分类模型性能优化的巨大潜力。尽管还有其他性能分析器可供您使用,每种分析器都有其优点和缺点,但我们选择了 PyTorch Profiler 和 TensorBoard 插件,因为它们易于集成。

我们应该强调的是,成功优化的路径将根据训练项目的细节(包括模型架构和训练环境)而有很大差异。在实践中,实现您的目标可能比我们在此介绍的示例更困难。我们描述的一些技术可能对您的表现影响不大,甚至可能使情况变得更糟。我们还注意到,我们选择的精确优化以及我们选择应用它们的顺序有些随意。强烈鼓励您根据项目的具体细节开发自己的工具和技术来实现优化目标。

机器学习工作负载的性能优化有时被视为次要的、非关键的和令人讨厌的。我希望我们已经成功地让您相信,节省开发时间和成本的潜力值得在性能分析和优化方面进行有意义的投资。

Reference

[1]

Source: https://towardsdatascience.com/pytorch-model-performance-analysis-and-optimization-10c3c5822869

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/45335.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springboot 实践(10)spring cloud 与consul配置运用之服务的注册与发现

前文讲解,完成了springboot、spring security、Oauth2.0的继承,实现了对系统资源的安全授权、允许获得授权的用户访问,也就是实现了单一系统的全部技术开发内容。 Springboot是微服务框架,单一系统只能完成指定系统的功能&#xf…

NSSCTF之Misc篇刷题记录(14)

[SWPUCTF] 2021新生赛之Crypto篇刷题记录① [UUCTF 2022 新生赛]王八快跑[安洵杯 2020]BeCare4[HDCTF 2023]ExtremeMisc[SUCTF 2018 招新赛]follow me[SUCTF 2018 招新赛]佛家妙语 NSSCTF平台:https://www.nssctf.cn/ PS:记得所有的flag都改为NSSCTF […

【Linux取经路】探索进程状态之僵尸进程 | 孤儿进程

文章目录 一、进程状态概述1.1 运行状态详解1.2 阻塞状态详解1.3 挂起状态详解 二、具体的Linux操作系统中的进程状态2.1 Linux内核源代码2.2 查看进程状态2.3 D磁盘休眠状态(Disk sleep)2.4 T停止状态(stopped) 三、僵尸进程3.1 僵尸进程危害总结 四、孤儿进程五、结语 一、进…

C++初阶——string(字符数组),跟C语言中的繁琐设计say goodbye

前言:在日常的程序设计中,我们会经常使用到字符串。比如一个人的身份证号,家庭住址等,只能用字符串表示。在C语言中,我们经常使用字符数组来存储字符串,但是某些场景(比如插入,删除)下操作起来很…

git版本管理加合并笔记

1.创建空文件夹,右键Bash here打开 2.打开链接,点击克隆下载,复制SSH链接 3.输入git SSH链接 回车 遇到问题: 但明明我已经有权限了, 还是蹦出个这 4.换成https在桌面上进行克隆仓库就正常了 5.去vscode里改东西 …

删除远程桌面的下拉框ip地址

原因: 如下图,有时候想清理掉无法连接的IP。 方法: 一、进入 注册表编辑器 进入方法:一下两个方法都可以使用。 1. 在win10里面直接搜索 注册表编辑器,然后打开 2. 打开 运行(Win R)&#xff…

文件同步工具rsync

文章目录 作用特性安装命令服务端启动增加安全认证及免密登录 实时推送源服务器配置结合inotify实现实时推送 参数详解 学些过程中遇到的问题 作用 rsync是linux系统下的数据镜像备份工具。使用快速增量备份工具Remote Sync可以远程同步,支持本地复制,或…

在SpringBoot中添加拦截器忽略请求URL当中的指定字符串

1 自定义拦截器 Component public class GlobalInterceptor implements HandlerInterceptor {Overridepublic boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {String path request.getRequestURI();if (pa…

蛊卦-拨乱反正

目录 前言 卦辞 爻辞 总结 前言 题外话,今天占卜时,看错了,以为占到了蛊卦(后续会对自己的占卦经历进行补充,不断完善这个易经学习的专栏),那顺便就学习一下蛊卦,蛊惑人心&#…

OkHttp 源码浅析一

演进之路:原生Android框架不好用 ---- HttpUrlConnect 和 Apache HTTPClient 第一版 底层使用HTTPURLConnect 第二版 Square构建 从Android4.4开始 基本使用: val okhttp OkHttpClient()val request Request.Builder().url("http://www.baidu.com").buil…

axios使用axiosSource.cancel取消请求后怎么恢复请求,axios取消请求和恢复请求实现

在前端做大文件分片上传,或者其它中断请求时,需要暂停或重新请求,比如这里大文件上传时,可能会需要暂停、继续上传,如下GIF演示: 这里不详细说文件上传的处理和切片细节,后续有时间在出一篇&a…

ubuntu22.04 找不到串口,串口ttyusb时断时续的问题(拔插以后能检测到,过会儿就检测不到了)

1. 问题描述 ubuntu22.04的PC,在连接USB串口的时候,有时能找到ttyUSB0,有时找不到,如下: base) airsairs-Precision-3630-Tower:~$ ls -l /dev/ttyUSB* crwxrwxrwx 1 root dialout 188, 0 Aug 17 16:36 /dev/ttyUSB0 (base) air…

【JS基础】一些个人积累的原生JS编码设计思想,和大家一起开拓下思维

文章目录 前言对象配置链式调用队列调用并发执行未完待续 前言 以下都是我个人遇到的前端JS原生编码设计上的一些案例记录,希望能帮助新手开拓写代码的思想,并且能够结合自己的想法应用在实际的项目中,写出更加易读,拓展&#xf…

2023国赛数学建模B题思路模型代码 高教社杯

本次比赛我们将会全程更新思路模型及代码,大家查看文末名片获取 之前国赛相关的资料和助攻可以查看 2022数学建模国赛C题思路分析_2022国赛c题matlab_UST数模社_的博客-CSDN博客 2022国赛数学建模A题B题C题D题资料思路汇总 高教社杯_2022国赛c题matlab_UST数模社…

解决“topk_cpu“ not implemented for ‘Half‘

一、问题描述 如题报错:“topk_cpu” not implemented for ‘Half’ 是在使用transformers库时本地导入某个模型,完整报错如下: File "/Users/guomiansheng/anaconda3/envs/ep1/lib/python3.8/site-packages/torch/utils/_contextlib.p…

安卓监听端口接收消息

文章目录 其他文章监听端口接收消息 建立新线程完整代码 其他文章 下面是我的另一篇文章,是在电脑上发送数据,配合本篇文章,可以实现电脑与手机的局域网通讯。直接复制粘贴就能行,非常滴好用。 点击连接 另外,如果你不…

AI 绘画Stable Diffusion 研究(十二)SD数字人制作工具SadTlaker插件安装教程

免责声明: 本案例所用安装包免费提供,无任何盈利目的。 大家好,我是风雨无阻。 想必大家经常看到,无论是在产品营销还是品牌推广时,很多人经常以数字人的方式来为自己创造财富。而市面上的数字人收费都比较昂贵,少则几…

使用yolov5进行安全帽检测填坑指南

参考项目 c​​​​​​​​​​​​​​GitHub - PeterH0323/Smart_Construction: Base on YOLOv5 Head Person Helmet Detection on Construction Sites,基于目标检测工地安全帽和禁入危险区域识别系统,🚀😆附 YOLOv5 训练自己的…

Opencv 视频的读取与写入

目录 前言 通过路径获取视频内容 获取视频内容 检查是否正确打开 循环播放 完整代码 从摄像头读取视频数据 获取视频设备 其他与直接读取视频一致 完整实例 录制视频 用于创建视频编解码器的四字符码(FourCC) cv2.VideoWriter() 将视频帧…

Spring MVC 中的常见注解的用法

目录 认识 Spring MVC什么是 Spring MVCMVC 的定义 Spring MVC 注解的运用1. Spring MVC 的连接RequestMapping 注解 2. 获取参数获取单个参数获取多个参数传递对象表单传参后端参数重命名RequestBody 接收 JSON 对象PathVariable 获取 URL 中的参数上传文件 RequestPart获取 C…