题目链接
- 题意:
起始状态是(0。0),每次转移的时候都是对两个数中的较小的数操作。1)以概率p转向(min(a + 50,1000)。b) 2)以概率1-p转向(max(a-100,0),b)
- 分析:
首先发现状态转移的时候都是以50为单位,所以事实上就是除以50之后。即加1或者减2。达到20就可以 - 注意:
题目精度要求比較高。eps至少要到1e-10
const double eps = 1e-10;
double a[22 * 22][22 * 22], x[22 * 22]; //方程的左边的矩阵和等式右边的值,求解之后x存的就是结果
int equ, var; //方程数和未知数个数
int Gauss()
{int i, j, k, col, max_r;for (k = 0, col = 0; k < equ && col < var; k++, col++){max_r = k;for (i = k + 1; i < equ; i++)if (fabs(a[i][col]) > fabs(a[max_r][col]))max_r = i;if (fabs(a[max_r][col]) < eps) return 0;if (k != max_r){for (j = col; j < var; j++)swap(a[k][j], a[max_r][j]);swap(x[k], x[max_r]);}x[k] /= a[k][col];for (j = col + 1; j < var; j++) a[k][j] /= a[k][col];a[k][col] = 1;for (i = 0; i < equ; i++)if (i != k){x[i] -= x[k] * a[i][k];for (j = col + 1; j < var; j++) a[i][j] -= a[k][j] * a[i][col];a[i][col] = 0;}}return 1;
}double P;
int s[22 * 22][22 * 22];
void build()
{CLR(a, 0); CLR(x, 0);FE(i, 0, 20) FE(j, i, 20){int cur = s[i][j];if (~cur){a[cur][cur] = 1;if (i == 20 || j == 20)x[cur] = 0;else{int tx = min(i + 1, 20), ty = j;if (tx > ty) swap(tx, ty);int nxt = s[tx][ty];a[cur][nxt] -= P;tx = max(i - 2, 0); ty = j;if (tx > ty) swap(tx, ty);nxt = s[tx][ty];a[cur][nxt] -= 1 - P;x[cur] = 1;}}}
}
void bfs()
{CLR(s, -1);queue<int> qx, qy;qx.push(0); qy.push(0);int cnt = 0;s[0][0] = cnt++;while (!qx.empty()){int x = qx.front(); qx.pop();int y = qy.front(); qy.pop();int tx = min(x + 1, 20), ty = y;if (tx > ty) swap(tx, ty);if (!~s[tx][ty]){s[tx][ty] = cnt++;qx.push(tx); qy.push(ty);}tx = max(x - 2, 0), ty = y;if (!~s[tx][ty]){s[tx][ty] = cnt++;qx.push(tx); qy.push(ty);}}equ = var = cnt;
}int main()
{bfs();while (cin >> P){build();Gauss();printf("%.6lf\n", x[s[0][0]]);}return 0;
}