tensorflow源码安装

主要参考:https://www.tensorflow.org/install/install_sources#ConfigureInstallation


卸载tensorflow
    sudo pip uninstall tensorflow

安装git

    安装git时记得先安装,后更新系统
    sudo apt install git



安装jdk8:
    my@ubuntu:~$ java

    my@ubuntu:~$ sudo add-apt-repository ppa:openjdk/ppa

    my@ubuntu:~$ sudo add-apt-repository ppa:openjdk-r/ppa
 
    my@ubuntu:~$ sudo apt-get update

    my@ubuntu:~$ sudo apt-get install openjdk-8-jdk

    my@ubuntu:~$ sudo apt-get install openjdk-8-jre openjdk-8-jdk-headlesss
    
    my@ubuntu:~$ java -version
openjdk version "1.8.0_131"
OpenJDK Runtime Environment (build 1.8.0_131-8u131-b11-2ubuntu1.16.04.3-b11)
OpenJDK 64-Bit Server VM (build 25.131-b11, mixed mode)

Install Bazel:
    sudo apt-get update && sudo apt-get install bazel
    sudo apt-get upgrade bazel
    bazel version

一、安装virtualenv:
    my@ubuntu:~$ sudo apt-get install python-virtualenv

    在virtualenv中创建tensorfloe环境

    my@ubuntu:~$ virtualenv --system-site-packages ~/tensorflow

    激活tensorflow的virtualenv环境

    my@ubuntu:~$ source ~/tensorflow/bin/activate

    为虚拟环境创建快捷方式:
    sudo printf '\nalias tensorflow="source ~/tensorflow/bin/activate"'>>~/.bashrc
    让其生效:
    source ~/.bashrc

二、在env环境中
    
    git clone https://github.com/tensorflow/tensorflow

    sudo apt-get install python-numpy python-dev python-pip python-wheel

因为我的vm中没有gpu,省去gpu的配置环节:

    sudo apt-get install libcupti-dev

     sudo pip install six numpy wheel


下面这段摘自tensorflow的官方文档:
    $cd tensorflow  # cd to the top-level directory created
    $ ./configure
Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python2.7
Found possible Python library paths:
  /usr/local/lib/python2.7/dist-packages
  /usr/lib/python2.7/dist-packages
Please input the desired Python library path to use.  Default is [/usr/lib/python2.7/dist-packages]

Using python library path: /usr/local/lib/python2.7/dist-packages
Do you wish to build TensorFlow with MKL support? [y/N]
No MKL support will be enabled for TensorFlow
Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]:
Do you wish to use jemalloc as the malloc implementation? [Y/n]
jemalloc enabled
Do you wish to build TensorFlow with Google Cloud Platform support? [y/N]
No Google Cloud Platform support will be enabled for TensorFlow
Do you wish to build TensorFlow with Hadoop File System support? [y/N]
No Hadoop File System support will be enabled for TensorFlow
Do you wish to build TensorFlow with the XLA just-in-time compiler (experimental)? [y/N]
No XLA support will be enabled for TensorFlow
Do you wish to build TensorFlow with VERBS support? [y/N]
No VERBS support will be enabled for TensorFlow
Do you wish to build TensorFlow with OpenCL support? [y/N]
No OpenCL support will be enabled for TensorFlow
Do you wish to build TensorFlow with CUDA support? [y/N] Y
CUDA support will be enabled for TensorFlow
Do you want to use clang as CUDA compiler? [y/N]
nvcc will be used as CUDA compiler
Please specify the Cuda SDK version you want to use, e.g. 7.0. [Leave empty to default to CUDA 8.0]: 8.0
Please specify the location where CUDA 8.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]:
Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 6.0]: 6
Please specify the location where cuDNN 6 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size.
[Default is: "3.5,5.2"]: 3.0
Do you wish to build TensorFlow with MPI support? [y/N]
MPI support will not be enabled for TensorFlow
Configuration finished
这里是非常重要的编译配置:可以参考http://blog.csdn.net/nicholas_wong/article/details/70215127,但还要结合自己的机器报的警告来配置,
我的机器报如下警告:
/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.  
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.  
W tensorflow/core/platform,那我安装的时候就配置sse4.1和sse4.2的选项,刚开始直接把人家的复制过来用,安装完后报错,后来自己配置了一下,安装成功。而且上面的警告有时候是不会出现的,
我在安装SyntaxNet wrapper 地址及安装:https://github.com/short-edition/syntaxnet-wrapper时报错,导致测试走不下去,只能消除警告,
    sudo bazel build -c opt  --copt=-msse4.1 --copt=-msse4.2  //tensorflow/tools/pip_package:build_pip_package
这个编译时间超长,要有耐心。

上述命令会生成一个叫做build_pip_package的脚本,按照如下命令运行这个脚本,在/tmp/tensorflow_pkg文件夹中创建pip的安装包:

    bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
    cd  /tmp/tensorflow_pkg
    ls
会发现一个whl的文件:tensorflow-1.3.0-cp27-cp27mu-linux_x86_64.whl,这是编译生成的。
下面进行安装:

    sudo  pip install /tmp/tensorflow_pkg/tensorflow-1.3.0-cp27-cp27mu-linux_x86_64.whl
安装完成后进行测试:注意测试的时候不要到安装目录下测试。
$ python

Enter the following short program inside the python interactive shell:

# Python
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

If the system outputs the following, then you are ready to begin writing TensorFlow programs:

Hello, TensorFlow!

如果不报sse4.1和sse4.2错误,有可能安装成功。

安装syntaxnet:
    前提是tensorflow已经安装好,
    git clone --recursive https://github.com/tensorflow/models.git

    cd models/syntaxnet/tensorflow
配置选项:
    $ ./configure

(tensorflow) my@ubuntu:~/models/syntaxnet/tensorflow$ cd ..

    (tensorflow) my@ubuntu:~/models/syntaxnet$ bazel test syntaxnet/... util/utf8/...

    (tensorflow) my@ubuntu:~/models/syntaxnet$ chmod +x  syntaxnet/demo.sh

7、pip安装 asciitree、mock

    (tensorflow) my@ubuntu:~/models/syntaxnet$  pip install asciitree

    (tensorflow) my@ubuntu:~/models/syntaxnet$ pip install mock


    测试一个句子:

    (tensorflow) my@ubuntu:~/models/syntaxnet$ sudo  echo 'Bob brought the pizza to Alice.' | syntaxnet/demo.sh
    

测试中文:    

MODEL_DIRECTORY为解压的中文模型的位置,一种方式是从http://download.tensorflow.org/models/parsey_universal/Chinese.zip下载
然后解压到/home/py/models/syntaxnet/syntaxnet/models/parsey_universal,
另外一种方式是安装 A lightweight SyntaxNet wrapper 地址及安装:https://github.com/short-edition/syntaxnet-wrapper,它会自动安装语言模型

测试:
py@ubuntu:~/models/syntaxnet$ MODEL_DIRECTORY=/home/py/models/syntaxnet/syntaxnet/models/parsey_universal/Chinese

py@ubuntu:~/models/syntaxnet$ echo '然而,中国经历了30多年的改革开放' | syntaxnet/models/parsey_universal/tokenize_zh.sh $MODEL_DIRECTORY | syntaxnet/models/parsey_universal/parse.sh $MODEL_DIRECTORY


安装SyntaxNet Wrapper

直接复制文档了:

A lightweight SyntaxNet wrapper

The wrapper allows generic use of SyntaxNet in python. It provides interfaces for morphological analyse, pos tagging and dependency resolution along with optional formatting tool.

The wrapper does not intend to make any assumptions on the use of SyntaxNet, that's why it provides a simple interface and the raw output as default.

Disclaimer : Has been inspired from another wrapper but we did not want a server based wrapper.
Installation

We assume here that you have SyntaxNet installed and working properly on your workstation. If not, please refer to SyntaxNet official page

The wrapper has been tester on Ubuntu 14.04 Trusty and 16.04 Xenial.

(virtualenv)$ git clone https://github.com/short-edition/syntaxnet-wrapper.git
(virtualenv)$ cd syntaxnet-wrapper
(virtualenv)/syntaxnet-wrapper$ pip install -r requirements.txt
(virtualenv)/syntaxnet-wrapper$ vim syntaxnet_wrapper/config.yml
syntaxnet:
  ROOT_DIR: /home/user/workspace/syntactic_parser/tensorflow_models/syntaxnet
  PARSER_EVAL: bazel-bin/syntaxnet/parser_eval
  CONTEXT: syntaxnet/models/parsey_universal/context.pbtxt
  MODEL: syntaxnet/models/parsey_universal

(virtualenv)/syntaxnet-wrapper$ python -m unittest discover syntaxnet_wrapper
(virtualenv)/syntaxnet-wrapper$ pip install .

这一句比较重要:创建 /usr/share/syntaxnet_wrapper_config.yml,内容就是
syntaxnet:
  ROOT_DIR: /home/py/models/syntaxnet
  PARSER_EVAL: bazel-bin/syntaxnet/parser_eval
  CONTEXT: syntaxnet/models/parsey_universal/context.pbtxt
  MODEL: syntaxnet/models/parsey_universal


You should be able to use the wrapper from now. Instead of creating config.yml in the current folder, you can also expose it though the environment variable SYNTAXNET_WRAPPER_CONFIG or copying it in /usr/share/syntaxnet_wrapper_config.yml

You can also use the Dockerfile provided that will install SyntaxNet itself and the wrapper
How to use this wrapper

Two mode

You can use the wrapper in two modes, embodied in two different classes with the same interface

    SyntaxNetWrapperSubprocess, a python implementation of demo.sh shell script provided in SyntaxNet. It starts new subprocesses at each call.
    SyntaxNetWrapper, using wrapper's syntaxnet python implementation. Have the advantage to be faster and more memory efficient than the version with subprocesses. However, we are experience some trouble with it. See Well-known issues

The interface

The wrapper is expecting unicode text compatible with utf-8 format. The interface is the same for both classes :

    morpho_sentence, make morphological analyse for a single sentence

    morpho_sentences, make morphological analyse for a sentences list

    tag_sentence, make pos tagging for a single sentence

    tag_sentences, make pos tagging for a sentences list

    parse_sentence, make dependency parsing for a single sentence

    parse_sentences, make dependency parsing for a sentences list

    transform_morpho, transform_tag and transform_dependency format the outputs in a more readable form. Deleting unfilled field.

例子:

>>> from syntaxnet_wrapper.wrapper import SyntaxNetWrapper
>>> sn_wrapper = SyntaxNetWrapper()
>>> dependency_output = sn_wrapper.parse_sentence(u"Bob brought a pizza to Alice")
>>> print dependency_output
u'1\tBob\t_\tPROPN\tNNP\tNumber=Sing|fPOS=PROPN++NNP\t2\tnsubj\t_\t_\n2\tbrought\t_\tVERB\tVBD\tMood=Ind|Tense=Past|VerbForm=Fin|fPOS=VERB++VBD\t0\tROOT\t_\t_\n3\ta\t_\tDET\tDT\tDefinite=Ind|PronType=Art|fPOS=DET++DT\t4\tdet\t_\t_\n4\tpizza\t_\tNOUN\tNN\tNumber=Sing|fPOS=NOUN++NN\t2\tdobj\t_\t_\n5\tto\t_\tADP\tIN\tfPOS=ADP++IN\t6\tcase\t_\t_\n6\tAlice\t_\tPROPN\tNNP\tNumber=Sing|fPOS=PROPN++NNP\t4\tnmod\t_\t_\n\n'

Use of different language

The wrapper use by default english model but you can use every "Parsey Universal" released by Google. You just need to pass the name of the model as a constructor's argument. The wrapper will then automatically download the model and use it.

>>> sn_wrapper = SyntaxNetWrapper(language='French')



转载于:https://www.cnblogs.com/herosoft/p/8134123.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/453237.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Makefile学习之通配符和自动变量

规则中的通配符 “*” ,“?” ,“ [...]”, " % " , " wildcard " 1.“*” *.c表示所有后缀为.C的文件; 如果文件中用到通配符,使用“\*”; 2.通配符在变量中的使用; objects*.c 注意…

英语中十二个月名称的由来

转自网络,原出处不详。 公历一年有12个月,但不少人并不知道12 个月的英语名称的来历。公历起源于古罗马历法。罗马的英语原来只有10 个月,古罗马皇帝决定增加两个月放在年尾,后来朱里斯*凯撒大帝把这两个月移到年初,…

进程和程序的关系

1 进程是一个动态概念,而程序是一个静态概念。 2 进程具有并行特征,程序没有。 3 进程是竞争资源的基本单位。 4 一个程序对应多个进程,一个进程为多个程序服务。

Android怎么插手机卡,魅蓝E手机卡怎么装 魅蓝E手机SIM卡安装图文教程

昨天下午,魅族发布了全新系列魅蓝手机——魅蓝E,定位魅蓝高端产品线,售价1299元,李楠号称魅蓝E采用三四千元的旗舰机工艺,外观/屏幕/拍照提升明显。此外,魅蓝E依旧支持全网通双卡双待。那么魅蓝E怎么插卡/装…

快速幂总结

快速幂总结 快速幂这个东西比较好理解,但实现起来到不老好办,记了几次老是忘,今天把它系统的总结一下防止忘记。 首先,快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来…

第三章

一.项目前期的主要工作 1.现状分析 ①.硬件分析 ②.软件分析 2.需求收集 3.粗略设计 ①.体系结构分析 ②.硬件(网络)设计 ③.应用系统设计 ④.安全设计 ⑤.配套设计 4.可行性分析 二.结构的项目前期实例 1.组织分析 3.需求收集 4.粗略设计 ①.系统体系结…

进程的静止和活动状态

进程有3个主要状态,即就绪,执行和等待。当一个进程被创建的时候,处于就绪状态,严格地说是静止就绪状态,等到被激活,该进程就处于活动就绪状态,如果时间片轮到该进程,那么该进程就执行…

荣耀magic3会用鸿蒙,赵明:荣耀Magic3芯片领先行业,大家看到以后会换掉手机!...

荣耀CEO赵明亲自参加高通2021技术峰会,宣布与高通达成战略合作,未来全系产品采用高通平台。赵明同时透露未来的产品动向,不排除未来与华为继续合作,采用鸿蒙操作系统的可能。赵明表示,Android操作系统依旧是荣耀的首选…

公司里从员工到经理,不同层级应该关注的事情

最近在看《领导梯队》,超级棒的一本书,受益匪浅,推荐给各位从事管理方向的朋友 第一阶段:从管理自我到管理他人(leader级)   新员工工作的最初几年是个人贡献者。无论他们从事的是销售、会计、工程或是市…

继续教育学习脚本

/* 本脚本运行于浏览器conlose中,自动点击“继续学习”按钮,以实现阻止视频的暂停 */ (function(){ var getStylefunction(obj,styleName){ if(obj.style){ return obj.style[styleName]; }else if(obj.currentStyle){ …

三周第三次课 3.7 su命令 3.8 sudo命令 3.9 限制root远程登录

3.7 su命令1、su命令su命令是用来切换用户的;su命令需要使用- 进行切换,如果不使用- 也可以,但当前目录是在root下,没有彻底切换在root下 使用su命令创建文件,以指定用户的身份创建文件切换后显示-bash-4.2因为user5的…

js中加载指定的html代码,在js或JQuery中怎样判断页面html代码中含有指定名称的div元素...

在我们制作网页的过程中,想要在某个页面中的某一元素中添加新的内容,而不想改动那个页面,我们一般会直接在全局的jsz中直接加入document.getElementById("指定id")来给定指定元素新的内容,但在一些页面中没有指定id的div元素浏览器就会报错&am…

处理机和cpu的区别

处理机 处理机是计算机系统中存储程序和数据,并按照程序规定的步骤执行指令的部件。程序是描述处理机完成某项任务的指令序列。指令则是处理机能直接解释、执行的信息单位。处理机包括中央处理器(cpu),主存储器,输入-输出接口。处…

三星手机官方固件下载

一,网站下载: https://updato.com/firmware-archive-select-model 查询对应固件信息 https://www.sammobile.com/firmwares/galaxy-a7/SM-A7000/ http://samsung-updates.com/device/?idSM-A7000&detailsSM-A7000 二,下载器下载&#x…

133. Clone Graph

欢迎fork and star:Nowcoder-Repository-github 133. Clone Graph 题目 Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors.OJs undirected graph serialization:Nodes are labeled uniquely. We use # as a separa…

进程控制块PCB简介

PCB(process control block),进程控制块,是我们学习操作系统后遇到的第一个数据结构描述,它是对系统的进程进行管理的重要依据,和进程管理相关的操作无一不用到PCB中的内容。一般情况下,PCB中包含以下内容:…

html坐标绘制路径,canvas学习笔记之绘制简单路径

1 线段(直线路径)绘制线段一般步骤:moveTo(x,y) 移动画笔到指定的坐标点(x,y)lineTo(x,y) 使用直线连接当前端点和指定的坐标点(x,y)stroke() 根据当前的画线样式,绘制当前或已经存在的路径2 矩形路径绘制矩形路径一般步骤:rect(x, y, width, height) 矩形路径&…

如何实现Punycode中文域名转码

如果你见过中文域名应该会觉得很奇怪,为什么复制出来的域名变成一个很莫名其妙的字符串,比如这个秀恩爱的域名“郝越.我爱你”,实际显示的域名是 http://xn--vq3al9d.xn--6qq986b3xl/ 这就叫 Punycode 具体查看 https://www.punycoder.com/ P…

进程控制块包含的信息

进程控制块包含三类信息 1.标识信息。 用于唯一地标识一个进程,常常分由用户使用的外部标识符和被系统使用的内部标识号。几乎所有操作系统中进程都被赋予一个唯一的、内部使用的数值型的进程号,操作系统的其他控制表可以通过进程号来交叉引用进程控制…

增加表单的文字段的html的代码是,表单及表单新增元素(示例代码)

要想更好运用表单就要了解表单的的更多元素与属性,首先看看对表单基本了解。表单的基本了解 元素用于用户输入数据的收集元素是最重要的表单元素,有许多type其中是用于向表单处理程序提交表单的按钮。元素 元素定义待选择的下拉列表选项,元素…