本文首发于知乎
本文使用多线程实现一个简易爬虫框架,让我们只需要关注网页的解析,不用自己设置多线程、队列等事情。调用形式类似scrapy,而诸多功能还不完善,因此称为简易爬虫框架。
这个框架实现了Spider
类,让我们只需要写出下面代码,即可多线程运行爬虫
class DouBan(Spider):def __init__(self):super(DouBan, self).__init__()self.start_url = 'https://movie.douban.com/top250'self.filename = 'douban.json' # 覆盖默认值self.output_result = False self.thread_num = 10def start_requests(self): # 覆盖默认函数yield (self.start_url, self.parse_first)def parse_first(self, url): # 只需要yield待爬url和回调函数r = requests.get(url)soup = BeautifulSoup(r.content, 'lxml')movies = soup.find_all('div', class_ = 'info')[:5]for movie in movies:url = movie.find('div', class_ = 'hd').a['href']yield (url, self.parse_second)nextpage = soup.find('span', class_ = 'next').aif nextpage:nexturl = self.start_url + nextpage['href']yield (nexturl, self.parse_first)else:self.running = False # 表明运行到这里则不会继续添加待爬URL队列def parse_second(self, url):r = requests.get(url)soup = BeautifulSoup(r.content, 'lxml')mydict = {}title = soup.find('span', property = 'v:itemreviewed')mydict['title'] = title.text if title else Noneduration = soup.find('span', property = 'v:runtime')mydict['duration'] = duration.text if duration else Nonetime = soup.find('span', property = 'v:initialReleaseDate')mydict['time'] = time.text if time else Noneyield mydictif __name__ == '__main__':douban = DouBan()douban.run()
复制代码
可以看到这个使用方式和scrapy非常相似
- 继承类,只需要写解析函数(因为是简易框架,因此还需要写请求函数)
- 用yield返回数据或者新的请求及回调函数
- 自动多线程(scrapy是异步)
- 运行都一样只要
run
- 可以设置是否存储到文件等,只是没有考虑可扩展性(数据库等)
下面我们来说一说它是怎么实现的
我们可以对比下面两个版本,一个是上一篇文章中的使用方法,另一个是进行了一些修改,将一些功能抽象出来,以便扩展功能。
上一篇文章版本代码请读者自行点击链接去看,下面是修改后的版本代码。
import requests
import time
import threading
from queue import Queue, Empty
import json
from bs4 import BeautifulSoupdef run_time(func):def wrapper(*args, **kw):start = time.time()func(*args, **kw)end = time.time()print('running', end-start, 's')return wrapperclass Spider():def __init__(self):self.start_url = 'https://movie.douban.com/top250'self.qtasks = Queue()self.data = list()self.thread_num = 5self.running = Truedef start_requests(self):yield (self.start_url, self.parse_first)def parse_first(self, url):r = requests.get(url)soup = BeautifulSoup(r.content, 'lxml')movies = soup.find_all('div', class_ = 'info')[:5]for movie in movies:url = movie.find('div', class_ = 'hd').a['href']yield (url, self.parse_second)nextpage = soup.find('span', class_ = 'next').aif nextpage:nexturl = self.start_url + nextpage['href']yield (nexturl, self.parse_first)else:self.running = Falsedef parse_second(self, url):r = requests.get(url)soup = BeautifulSoup(r.content, 'lxml')mydict = {}title = soup.find('span', property = 'v:itemreviewed')mydict['title'] = title.text if title else Noneduration = soup.find('span', property = 'v:runtime')mydict['duration'] = duration.text if duration else Nonetime = soup.find('span', property = 'v:initialReleaseDate')mydict['time'] = time.text if time else Noneyield mydictdef start_req(self):for task in self.start_requests():self.qtasks.put(task)def parses(self):while self.running or not self.qtasks.empty():try:url, func = self.qtasks.get(timeout=3)print('crawling', url)for task in func(url):if isinstance(task, tuple):self.qtasks.put(task)elif isinstance(task, dict):self.data.append(task)else:raise TypeError('parse functions have to yield url-function tuple or data dict')except Empty:print('{}: Timeout occurred'.format(threading.current_thread().name))print(threading.current_thread().name, 'finished')@run_timedef run(self, filename=False):ths = []th1 = threading.Thread(target=self.start_req)th1.start()ths.append(th1)for _ in range(self.thread_num):th = threading.Thread(target=self.parses)th.start()ths.append(th)for th in ths:th.join()if filename:s = json.dumps(self.data, ensure_ascii=False, indent=4)with open(filename, 'w', encoding='utf-8') as f:f.write(s)print('Data crawling is finished.')if __name__ == '__main__':Spider().run(filename='frame.json')
复制代码
这个改进主要思路如下
- 我们希望写解析函数时,像scrapy一样,用yield返回待抓取的URL和它对应的解析函数,于是就做了一个包含(URL,解析函数)的元组队列,之后只要不断从队列中获取元素,用函数解析url即可,这个提取的过程使用多线程
yield
可以返回两种类型数据,一种是元组(URL,解析函数),一种是字典(即我们要的数据),通过判断分别加入不同队列中。元组队列是不断消耗和增添的过程,而字典队列是一只增加,最后再一起输出到文件中- 在
queue.get
时,加入了timeout
参数并做异常处理,保证每一个线程都能结束
这里其实没有特别的知识,也不需要解释很多,读者自己复制代码到文本文件里对比就知道了
然后框架的形式就是从第二种中,剥离一些通用的设定,让用户自定义每个爬虫独特的部分,完整代码如下(本文开头的代码就是下面这块代码的后半部分)
import requests
import time
import threading
from queue import Queue, Empty
import json
from bs4 import BeautifulSoupdef run_time(func):def wrapper(*args, **kw):start = time.time()func(*args, **kw)end = time.time()print('running', end-start, 's')return wrapperclass Spider():def __init__(self):self.qtasks = Queue()self.data = list()self.thread_num = 5self.running = Trueself.filename = Falseself.output_result = Truedef start_requests(self):yield (self.start_url, self.parse)def start_req(self):for task in self.start_requests():self.qtasks.put(task)def parses(self):while self.running or not self.qtasks.empty():try:url, func = self.qtasks.get(timeout=3)print('crawling', url)for task in func(url):if isinstance(task, tuple):self.qtasks.put(task)elif isinstance(task, dict):if self.output_result:print(task)self.data.append(task)else:raise TypeError('parse functions have to yield url-function tuple or data dict')except Empty:print('{}: Timeout occurred'.format(threading.current_thread().name))print(threading.current_thread().name, 'finished')@run_timedef run(self):ths = []th1 = threading.Thread(target=self.start_req)th1.start()ths.append(th1)for _ in range(self.thread_num):th = threading.Thread(target=self.parses)th.start()ths.append(th)for th in ths:th.join()if self.filename:s = json.dumps(self.data, ensure_ascii=False, indent=4)with open(self.filename, 'w', encoding='utf-8') as f:f.write(s)print('Data crawling is finished.')class DouBan(Spider):def __init__(self):super(DouBan, self).__init__()self.start_url = 'https://movie.douban.com/top250'self.filename = 'douban.json' # 覆盖默认值self.output_result = False self.thread_num = 10def start_requests(self): # 覆盖默认函数yield (self.start_url, self.parse_first)def parse_first(self, url): # 只需要yield待爬url和回调函数r = requests.get(url)soup = BeautifulSoup(r.content, 'lxml')movies = soup.find_all('div', class_ = 'info')[:5]for movie in movies:url = movie.find('div', class_ = 'hd').a['href']yield (url, self.parse_second)nextpage = soup.find('span', class_ = 'next').aif nextpage:nexturl = self.start_url + nextpage['href']yield (nexturl, self.parse_first)else:self.running = False # 表明运行到这里则不会继续添加待爬URL队列def parse_second(self, url):r = requests.get(url)soup = BeautifulSoup(r.content, 'lxml')mydict = {}title = soup.find('span', property = 'v:itemreviewed')mydict['title'] = title.text if title else Noneduration = soup.find('span', property = 'v:runtime')mydict['duration'] = duration.text if duration else Nonetime = soup.find('span', property = 'v:initialReleaseDate')mydict['time'] = time.text if time else Noneyield mydictif __name__ == '__main__':douban = DouBan()douban.run()
复制代码
我们这样剥离之后,就只需要写后半部分的代码,只关心网页的解析,不用考虑多线程的实现了。
欢迎关注我的知乎专栏
专栏主页:python编程
专栏目录:目录
版本说明:软件及包版本说明