【AI大模型】训练Al大模型

大模型超越AI

前言

洁洁的个人主页
我就问你有没有发挥!
知行合一,志存高远。

目前所指的大模型,是“大规模深度学习模型”的简称,指具有大量参数和复杂结构的机器学习模型,可以处理大规模的数据和复杂的问题,多应用于自然语言处理、计算机视觉、语音识别等领域。大模型具有更多的参数、更强的表达能力和更高的预测性能,对自然语言处理、计算机视觉和强化学习等任务产生了深远的影响。本文将探讨大模型的概念、训练技术和应用领域,以及与大模型相关的挑战和未来发展方向。

请添加图片描述

应用领域
首先来谈一谈大模型的·成就
大模型已经在许多应用领域取得了显著的成果,包括:

  1. 自然语言处理:
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration# 加载预训练模型和分词器
model = T5ForConditionalGeneration.from_pretrained('t5-base')
tokenizer = T5Tokenizer.from_pretrained('t5-base')# 输入文本
input_text = "Translate this text to French."# 分词和编码
input_ids = tokenizer.encode(input_text, return_tensors='pt')# 生成翻译
translated_ids = model.generate(input_ids)
translated_text = tokenizer.decode(translated_ids[0], skip_special_tokens=True)print("Translated Text:", translated_text)
  1. 计算机视觉:
import torch
import torchvision.models as models
import torchvision.transforms as transforms
from PIL import Image# 加载预训练模型和图像预处理
model = models.resnet50(pretrained=True)
preprocess = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 加载图像
image = Image.open("image.jpg")# 图像预处理
input_tensor = preprocess(image)
input_batch = input_tensor.unsqueeze(0)# 使用GPU加速
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
input_batch = input_batch.to(device)# 前向传播
with torch.no_grad():output = model(input_batch)# 输出预测结果
_, predicted_idx = torch.max(output, 1)
predicted_label = predicted_idx.item()
print("Predicted Label:", predicted_label)
  1. 强化学习:
import gym
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F# 创建神经网络模型
class QNetwork(nn.Module):def __init__(self, state_size, action_size):super(QNetwork, self).__init__()self.fc1 = nn.Linear(state_size, 64)self.fc2 = nn.Linear(64, 64)self.fc3 = nn.Linear(64, action_size)def forward(self, x):x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x# 初始化环境和模型
env = gym.make('CartPole-v0')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
model = QNetwork(state_size, action_size)
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练过程
num_episodes = 100
for episode in range(num_episodes):state = env.reset()done = Falsewhile not done:# 选择动作state_tensor = torch.tensor(state, dtype=torch.float).unsqueeze(0)q_values = model(state_tensor)action = torch.argmax(q_values, dim=1).item()# 执行动作并观察结果next_state, reward, done, _ = env.step(action)# 计算损失函数next_state_tensor = torch.tensor(next_state, dtype=torch.float).unsqueeze(0)target_q_values = reward + 0.99 * torch.max(model(next_state_tensor))loss = F.mse_loss(q_values, target_q_values.unsqueeze(0))# 反向传播和优化器步骤optimizer.zero_grad()loss.backward()optimizer.step()state = next_state# 输出每个回合的总奖励print("Episode:", episode, "Reward:", reward)

请添加图片描述

  1. 推荐系统:
import torch
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from torch.nn import Linear, ReLU, Softmax
import torch.optim as optim# 加载数据集
train_dataset = MNIST(root='.', train=True, download=True, transform=ToTensor())
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)# 创建推荐模型(多层感知机)
class Recommender(torch.nn.Module):def __init__(self):super(Recommender, self).__init__()self.flatten = torch.nn.Flatten()self.linear_relu_stack = torch.nn.Sequential(Linear(784, 512),ReLU(),Linear(512, 256),ReLU(),Linear(256, 10),Softmax(dim=1))def forward(self, x):x = self.flatten(x)logits = self.linear_relu_stack(x)return logitsmodel = Recommender()# 定义损失函数和优化器
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)# 训练过程
num_epochs = 10
for epoch in range(num_epochs):for batch, (images, labels) in enumerate(train_loader):# 前向传播outputs = model(images)loss = loss_fn(outputs, labels)# 反向传播和优化器步骤optimizer.zero_grad()loss.backward()optimizer.step()print(f"Epoch {epoch+1}/{num_epochs}, Loss: {loss.item():.4f}")

请添加图片描述

什么是大模型?

大模型是指具有庞大参数数量的机器学习模型。传统的机器学习模型通常只有几百或几千个参数,而大模型则可能拥有数亿或数十亿个参数。这种巨大的模型规模赋予了大模型更强的表达能力和预测能力,可以处理更为复杂的任务和数据。

训练大模型的挑战

训练大模型需要应对一系列挑战,包括:

  1. 以下是与大模型相关的一些代码示例:

    1. 计算资源需求:
    import tensorflow as tf# 指定使用GPU进行训练
    with tf.device('/gpu:0'):# 构建大模型model = build_large_model()# 使用大量计算资源进行训练model.fit(train_data, train_labels, epochs=10, batch_size=128)
    
    1. 数据集规模:
    import tensorflow as tf
    from tensorflow.keras.preprocessing.image import ImageDataGenerator# 创建ImageDataGenerator对象,用于数据增强和扩充
    datagen = ImageDataGenerator(rotation_range=20,width_shift_range=0.2,height_shift_range=0.2,shear_range=0.2,zoom_range=0.2,horizontal_flip=True,fill_mode='nearest'
    )# 加载大规模的图像数据集
    train_generator = datagen.flow_from_directory('train_data/',target_size=(224, 224),batch_size=32,class_mode='categorical'
    )# 使用大规模的数据集进行训练
    model.fit(train_generator, epochs=10)
    

请添加图片描述

  1. 优化算法:
import tensorflow as tf
from tensorflow.keras.optimizers import Adam# 构建大模型
model = build_large_model()# 使用改进后的优化算法(例如Adam)进行训练
optimizer = Adam(learning_rate=0.001)
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])# 使用大规模的数据集进行训练
model.fit(train_data, train_labels, epochs=10, batch_size=128)
  1. 模型压缩与部署:
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.models import Model# 加载已经训练好的大模型
model = load_model('large_model.h5')# 进行模型压缩,例如剪枝操作
pruned_model = prune_model(model)# 保存压缩后的模型
pruned_model.save('pruned_model.h5')# 部署压缩后的模型,例如使用TensorRT进行加速
trt_model = convert_to_tensorrt(pruned_model)
trt_model.save('trt_model.pb')

请添加图片描述

如何训练大模型

为了克服训练大模型的挑战,研究人员提出了一些关键的技术:

  1. 以下是一些与上述技术相关的代码示例:

    分布式训练:

    import torch
    import torch.nn as nn
    import torch.optim as optim
    import torch.multiprocessing as mp
    from torch.nn.parallel import DistributedDataParallel as DDPdef train(rank, world_size):# 初始化进程组dist.init_process_group("gloo", rank=rank, world_size=world_size)# 创建模型并移至指定的计算设备model = MyModel().to(rank)ddp_model = DDP(model, device_ids=[rank])# 定义优化器和损失函数optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)criterion = nn.CrossEntropyLoss()# 模拟数据集dataset = MyDataset()sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=world_size, rank=rank)dataloader = torch.utils.data.DataLoader(dataset, batch_size=64, shuffle=False, sampler=sampler)# 训练循环for epoch in range(10):for inputs, targets in dataloader:optimizer.zero_grad()outputs = ddp_model(inputs)loss = criterion(outputs, targets)loss.backward()optimizer.step()if __name__ == '__main__':world_size = 4  # 进程数量mp.spawn(train, args=(world_size,), nprocs=world_size)
    

    模型并行:

    import torch
    import torch.nn as nn
    from torch.nn.parallel import DataParallelclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.conv1 = nn.Conv2d(3, 64, kernel_size=3)self.conv2 = nn.Conv2d(64, 128, kernel_size=3)self.fc = nn.Linear(128 * 10 * 10, 10)def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = x.view(x.size(0), -1)x = self.fc(x
    [Something went wrong, please try again later.]
    
  2. 数据并行示例:

import torch
import torch.nn as nn
from torch.nn.parallel import DataParallel# 创建模型
class MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.fc = nn.Linear(10, 5)def forward(self, x):return self.fc(x)model = MyModel()
model_parallel = DataParallel(model)  # 默认使用所有可用的GPU进行数据并行input = torch.randn(16, 10)  # 输入数据
output = model_parallel(input)

请添加图片描述

3.混合精度训练示例:

import torch
import torch.nn as nn
import torch.optim as optim
from apex import amp# 创建模型和优化器
model = MyModel()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 混合精度训练初始化
model, optimizer = amp.initialize(model, optimizer, opt_level="O2")# 训练循环
for epoch in range(10):for inputs, targets in dataloader:optimizer.zero_grad()# 使用混合精度进行前向和反向传播with amp.autocast():outputs = model(inputs)loss = criterion(outputs, targets)# 反向传播和优化器步骤scaler.scale(loss).backward()scaler.step(optimizer)scaler.update()

4.模型压缩示例:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.utils.prune as prune# 创建模型并加载预训练权重
model = MyModel()
model.load_state_dict(torch.load('pretrained_model.pth'))# 剪枝
parameters_to_prune = ((model.conv1, 'weight'), (model.fc, 'weight'))
prune.global_unstructured(parameters_to_prune,pruning_method=prune.L1Unstructured,amount=0.5,
)# 量化
model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
torch.quantization.prepare(model, inplace=True)
model.eval()
model = torch.quantization.convert(model, inplace=True)# 低秩分解
parameters_to_low_rank = ((model.conv1, 'weight'), (model.fc, 'weight'))
for module, name in parameters_to_low_rank:u, s, v = torch.svd(module.weight.data)k = int(s.size(0) * 0.1)  # 保留前10%的奇异值module.weight.data = torch.mm(u[:, :k], torch.mm(torch.diag(s[:k]), v[:, :k].t()))# 训练和优化器步骤
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
criterion = nn.CrossEntropyLoss()

请添加图片描述

未来发展

尽管大模型在各个领域都取得了重要的进展,但仍然有很多挑战需要解决。未来的发展方向可能包括:

  1. 更高效的训练算法:研究人员将继续致力于开发更高效、可扩展的训练算法,以加快大模型的训练速度。
  2. 更智能的模型压缩技术:模型压缩和加速技术将继续发展,以减小大模型的计算和存储开销。
  3. 更好的计算平台支持:为了支持训练和部署大模型,计算平台将继续改进,提供更强大的计算资源和工具。
  4. 更好的跨模态应用:特别是在大场景下的表现能力十分突出。正在经历智能化、制造革新的“车”,就有不少可以展开无限想象的大模型应用场景。
    请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/45078.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MybatisPlus整合p6spy组件SQL分析

目录 p6spy java为什么需要 如何使用 其他配置 p6spy p6spy是一个开源项目,通常使用它来跟踪数据库操作,查看程序运行过程中执行的sql语句。 p6spy将应用的数据源给劫持了,应用操作数据库其实在调用p6spy的数据源,p6spy劫持到…

uniapp配置添加阿里巴巴图标icon流程步骤

文章目录 下载复制文件到项目文件夹里项目配置目录结构显示图标 下载 阿里巴巴icon官网 https://www.iconfont.cn/ 复制文件到项目文件夹里 项目配置目录结构 显示图标

华为将收取蜂窝物联网专利费,或将影响LPWAN市场发展

近日,华为正式公布了其4G和5G手机、Wi-Fi6设备和物联网产品的专利许可费率,其中包含了长距离通信技术蜂窝物联网。作为蜂窝物联网技术的先驱,华为是LTE Category NB (NB-IoT)、LTE Category M和其他4G物联网标准的主要贡献者。 在NB-IoT领域…

基于traccar快捷搭建gps轨迹应用

0. 环境 - win10 虚拟机ubuntu18 - i5 ubuntu22笔记本 - USB-GPS模块一台,比如华大北斗TAU1312-232板 - 双笔记本组网设备:路由器,使得win10笔记本ip:192.168.123.x,而i5笔记本IP是192.168.123.215。 - 安卓 手机 1.…

React2023电商项目实战 - 1.项目搭建

古人学问无遗力,少壮工夫老始成。 纸上得来终觉浅,绝知此事要躬行。 —— 陆游《《冬夜读书示子聿》》 系列文章目录 项目搭建App登录及网关App文章自媒体平台(博主后台)内容审核(自动) 文章目录 系列文章目录一、项目介绍1.页面…

ubuntu安装Microsoft Edge并设置为中文

1、下载 edge.deb 版本并安装 sudo dpkg -i microsoft-edg.deb 2. 设置默认中文显示 如果是通过.deb方式安装的: 打开默认安装路径下的microsoft-edge-dev文件,在文件最开头加上: export LANGUAGEZH-CN.UTF-8 ,保存退出。 cd /opt/micr…

python绘制谷歌地图

谷歌地图 更多好看的图片见pyecharts官网 import pyecharts.options as opts from pyecharts.charts import MapGlobe from pyecharts.faker import POPULATIONdata [x for _, x in POPULATION[1:]] low, high min(data), max(data)c (MapGlobe().add_schema().add(mapty…

【100天精通python】Day42:python网络爬虫开发_HTTP请求库requests 常用语法与实战

目录 1 HTTP协议 2 HTTP与HTTPS 3 HTTP请求过程 3.1 HTTP请求过程 3.2 GET请求与POST请求 3.3 常用请求报头 3.4 HTTP响应 4 HTTP请求库requests 常用语法 4.1 发送GET请求 4.2 发送POST请求 4.3 请求参数和头部 4.4 编码格式 4.5 requests高级操作-文件上传 4.6 …

Spring Boot 统一功能处理

目录 1.用户登录权限效验 1.1 Spring AOP 用户统一登录验证的问题 1.2 Spring 拦截器 1.2.1 自定义拦截器 1.2.2 将自定义拦截器加入到系统配置 1.3 拦截器实现原理 1.3.1 实现原理源码分析 2. 统一异常处理 2.1 创建一个异常处理类 2.2 创建异常检测的类和处理业务方法 3. 统一…

【Spring系列篇--关于IOC的详解】

目录 面试经典题目: 1. 什么是spring?你对Spring的理解?简单来说,Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架。 2.什么是IoC?你对IoC的理解?IoC的重要性?将实例化对象的权利从程序员…

Centos 8 网卡connect: Network is unreachable错误解决办法

现象1、ifconfig没有ens160配置 [testlocalhost ~]$ ifconfig lo: flags73<UP,LOOPBACK,RUNNING> mtu 65536 inet 127.0.0.1 netmask 255.0.0.0 inet6 ::1 prefixlen 128 scopeid 0x10<host> loop txqueuelen 1000 (Local Loopba…

基于深度学习的指针式仪表倾斜校正方法——论文解读

中文论文题目:基于深度学习的指针式仪表倾斜校正方法 英文论文题目&#xff1a;Tilt Correction Method of Pointer Meter Based on Deep Learning 周登科、杨颖、朱杰、王库.基于深度学习的指针式仪表倾斜校正方法[J].计算机辅助设计与图形学学报, 2020, 32(12):9.DOI:10.3724…

【Java】智慧工地SaaS平台源码:AI/云计算/物联网/智慧监管

智慧工地是指运用信息化手段&#xff0c;围绕施工过程管理&#xff0c;建立互联协同、智能生产、科学管理的施工项目信息化生态圈&#xff0c;并将此数据在虚拟现实环境下与物联网采集到的工程信息进行数据挖掘分析&#xff0c;提供过程趋势预测及专家预案&#xff0c;实现工程…

《强化学习:原理与Python实战》——可曾听闻RLHF

前言&#xff1a; RLHF&#xff08;Reinforcement Learning with Human Feedback&#xff0c;人类反馈强化学习&#xff09;是一种基于强化学习的算法&#xff0c;通过结合人类专家的知识和经验来优化智能体的学习效果。它不仅考虑智能体的行为奖励&#xff0c;还融合了人类专家…

kafka安装说明以及在项目中使用

一、window 安装 1.1、下载安装包 下载kafka 地址&#xff0c;其中官方版内置zk&#xff0c; kafka_2.12-3.4.0.tgz其中这个名称的意思是 kafka3.4.0 版本 &#xff0c;所用语言 scala 版本为 2.12 1.2、安装配置 1、解压刚刚下载的配置文件&#xff0c;解压后如下&#x…

【机器学习】处理不平衡的数据集

一、介绍 假设您在一家给定的公司工作&#xff0c;并要求您创建一个模型&#xff0c;该模型根据您可以使用的各种测量来预测产品是否有缺陷。您决定使用自己喜欢的分类器&#xff0c;根据数据对其进行训练&#xff0c;瞧&#xff1a;您将获得96.2%的准确率&#xff01; …

Integer中缓存池讲解

文章目录 一、简介二、实现原理三、修改缓存范围 一、简介 Integer缓存池是一种优化技术&#xff0c;用于提高整数对象的重用和性能。在Java中&#xff0c;对于整数值在 -128 到 127 之间的整数对象&#xff0c;会被放入缓存池中&#xff0c;以便重复使用。这是因为在这个范围…

Python绘制爱心代码(七夕限定版)

写在前面&#xff1a; 又到了一年一度的七夕节啦&#xff01;你还在发愁送女朋友什么礼物&#xff0c;不知道怎样表达你满满的爱意吗&#xff1f;别担心&#xff0c;我来帮你&#xff01;今天&#xff0c;我将教你使用Python绘制一个跳动的爱心&#xff0c;用创意和幽默为这个…

Angular安全专辑之二——‘unsafe-eval’不是以下内容安全策略中允许的脚本源

一&#xff1a;错误出现 这个错误的意思是&#xff0c;拒绝将字符串评估为 JavaScript&#xff0c;因为‘unsafe-eval’不是以下内容安全策略中允许的脚本源。 二&#xff1a;错误场景 testEval() {const data eval("var sum2 new Function(a, b, return a b); sum2(em…

JavaWeb_LeadNews_Day6-Kafka

JavaWeb_LeadNews_Day6-Kafka Kafka概述安装配置kafka入门kafka高可用方案kafka详解生产者同步异步发送消息生产者参数配置消费者同步异步提交偏移量 SpringBoot集成kafka 自媒体文章上下架实现思路具体实现 来源Gitee Kafka 概述 对比 选择 介绍 producer: 发布消息的对象称…