eBay是如何进行大数据集元数据发现的

很多大数据系统每天都会收集数PB的数据。这类系统通常主要用于查询给定时间范围内的原始数据记录,并使用了多个数据过滤器。但是,要发现或识别存在于这些大型数据集中的唯一属性可能很困难。

在大型数据集上执行运行时聚合(例如应用程序在特定时间范围内记录的唯一主机名),需要非常巨大的计算能力,并且可能非常慢。对原始数据进行采样是一种发现属性的办法,但是,这种方法会导致我们错过数据集中的某些稀疏或稀有的属性。

介绍

我们在内部实现了一个元数据存储,可以保证实时发现大量来自不同监控信号源的所有唯一属性(或元数据)。它主要依赖于后端的Elasticsearch和RocksDB。Elasticsearch让聚合可以查找在一个时间范围内的唯一属性,而RocksDB让我们能够对一个时间窗口内具有相同哈希的数据进行去重,避免了冗余写入。

我们提供了三种监控信号源的元数据发现:指标、日志和事件。

指标

指标是周期性的时间序列数据,包含了指标名称、源时间戳、map形式的维度和长整型数值,例如http.hits 123456789034877 host=A。

在上面的示例中,http.hits是指标名称,1234567890是EPOC UTC时间戳,34877是长整型数值,host=A是维度{K,V}键值对。我们支持发现指标名称和带有维度map的名称空间。

日志

日志是来自各种应用程序或软件/硬件基础设施的日志行。

我们用以下格式表示日志:

\"\"

日志对用例(也称为名称空间)来说总是可发现的。每个日志行都可以是某种特定类型,例如stdout或stderr。

日志信号的类型(也称为名称)也是可发现的,如上例所示,键值map也是可发现的。

事件

事件类似于日志和指标。它们可以被视为一种稀疏指标,表示为系统内的事件。它们是非周期性的。例如,路由器交换机变为不可用时会被记录为事件。此外,它们可能会有点冗长,可能会包含大量的文本信息用以说明事件期间发生了什么。

事件的一个简单示例:

\"\"

与日志和指标类似,事件也有名称空间和名称,两者都是可发现的。可发现的字段键让我们能够在已知字段上执行聚合操作,例如MIN、MAX和COUNT。

下面的截图突出显示了我们的产品控制台中的发现属性:

\"\"

方法和设计

所有监控信号最初都由我们的ingress服务实例负责接收。这些服务节点使用自定义分区逻辑将不同的输入监控信号(日志、指标和事件)推送到Kafka数据总线主题上。元数据存储ingress守护程序负责消费这些监控信号,然后将它们写入到后端Elasticsearch。

\"\"

我们收集的监控信号被推送到Kafka总线上,它们是我们的源数据流。Kafka的一个优点是它提供了持久存储,即使下游管道处于维护或不可用状态。我们还在入口服务上使用自定义Kafka分区器,以确保具有相同哈希值的键始终位于相同的Kafka分区上。不同的监控信号内部使用不同的哈希值。例如,我们使用基于名称空间+名称的哈希值来表示指标信号,而日志信号则使用了基于“名称空间+维度{K,V}”的哈希值。这种分组有助于降低下游Kafka消费者需要处理的数据量基数,从而有效地减少内存占用总量。

与我们的元数据存储入口守护进程类似,还有其他一些消费者将原始监控信号写入到后端存储,如Hadoop、HBase、Druid等。单独的发现管道可以在随后将这些原始监控信号输出,而无需执行昂贵的运行时聚合。

我们使用RocksDB作为元数据存储的嵌入式数据缓存,避免了对后端Elasticsearch数据接收器的重复写入。我们之所以选择RocksDB,是因为它的基准测试结果非常令人满意,并且具有很高的配置灵活性。

元数据存储入口守护程序在处理记录时,会将记录的键哈希与高速缓存中已存在的哈希进行对比。如果该记录尚未加载到缓存中,就将它写入Elasticsearch,并将其哈希键添加到缓存中。如果记录已存在于缓存中,则不执行任何操作。

RocksDB缓存偏重于读取,但在刚开始时(重置缓存)时出现了一连串写入。对于当前负载,读取超过了50亿,以及数千万的写入,大部分写入发生在前几分钟。因此,在刚开始时可能存在消费者滞后的情况。对于较低的读写延迟,我们努力将所有缓存数据保存在RocksDB的内存中,以避免二次磁盘存储查找。我们还禁用了预写日志(WAL)和压缩。在基准测试中,我们发现16GB的内存就足以存储哈希值。

\"\"

上图表示写入后端Elasticsearch的文档数。峰值对应于重置高速缓存之后的那段时间。

出于监控的目的,我们将所有rocksDB统计数据作为指标发送到我们的监控平台中。

我们使用Elasticsearch 6.x为后端聚合提供支持,用以识别监控信号中的不同属性。我们构建了一个包含30个节点的Elasticsearch集群,这些节点运行在配备了SSD和64 GB RAM的主机上,并通过我们的内部云平台来管理它们。我们为Elasticsearch JVM进程分配了30 GB内存,其余的留给操作系统。在摄取数据期间,基于监控信号中的不同元数据对文档进行哈希,以便唯一地标识文档。例如,根据名称空间、名称和不同的维度{K,V}对日志进行哈希处理。文档模型采用了父文档与子文档的格式,并按照名称空间和月份创建Elasticsearch索引。

我们根据{K,V}维度对根文档或父文档的document_id进行哈希处理,而子文档则根据名称空间、名称和时间戳进行哈希处理。我们为每一个时间窗口创建一个子文档,这个时间窗口也称为去抖动时段。去抖动时间戳是去抖动时段的开始时间。如果在去抖动期间发现了一个子文档,这意味着子文档的名称空间和名称的唯一组合与其父文档拓扑会一起出现。去抖动时间越短,发现唯一属性的时间近似就越好。Elasticsearch索引中的父文档和子文档之间存在1:N的关联关系。

\"\"

Elasticsearch中的父子文档动态模板是这样的:

\"\"

子文档的模板是这样的:

\"\"

我们为Elasticsearch集群维护了两个负载均衡器(LB)。READ LB IP(VIP)用于客户端节点,负责所有的读取操作,WRITE LB VIP则用于数据节点。这样有助于我们在不同的客户端节点上执行基于聚合的计算,而不会给数据节点造成太大压力。

如果你要频繁更新同一个文档,那么Elasticsearch不是最好的选择,因为文档的片段合并操作非常昂贵。在出现高峰流量时,后台的文档片段合并会极大地影响索引和搜索性能。因此,我们在设计文档时将其视为不可变的。

我们使用以下的命名法为Elasticsearch集群创建索引:

\"\"

例如,以下是后端Elasticsearch服务器的索引:

\"\"

我们按照月份来维护索引,并保留三个月的索引。如果要清除索引,就直接删除它们。

我们的发现服务是一个作为Docker镜像进行部署的Web应用程序,它公开了REST API,用于查询后端元数据存储。

发现服务提供的关键REST API包括:

  • 在不同的监控信号(日志/事件/指标)上查找名称空间(或用例);

  • 查找给定时间范围内名称空间的所有名称;

  • 根据输入的名称空间、名称列表或给定的时间范围查找所有监控信号的维度键值;

  • 根据输入的名称空间和给定时间范围查找值键;

  • 根据输入维度{K,V}过滤器查找所有名称空间或名称;

  • 对于给定的名称空间、名称和不同的维度过滤器,还可以根据该唯一输入组合找到其他关联维度。

我们的元数据存储入口守护程序部署和托管在内部Kubernetes平台(也称为Tess.io)上。元数据存储入口守护程序的应用程序生命周期在Kubernetes上作为无状态应用程序进行管理。我们的托管Kubernetes平台允许在部署期间自定义指标注解,我们可以在Prometheus格式的已知端口上发布健康指标。监控仪表盘和警报是基于这些运行状况指标进行设置的。我们还在发现服务上公开了类似的指标,以捕获错误/成功率和平均搜索延迟。

性能

  • 我们能够在10个元数据入口守护进程节点(下游Kafka消费者)上每分钟处理160万个指标信号而不会出现任何性能问题;

  • 可以在几秒钟之内发现任何唯一的元数据属性;

  • 在我们的生产环境中,我们的去抖动窗口间隔设置为12小时,在每个去抖动期间,我们拥有约4,000万的唯一基数(最多可达6000万)。

\"\"

目前,我们发现生产环境中触发的大多数查询的平均延迟为100毫秒。而且我们发现,跨名称空间触发的查询比基于目标名称空间的查询要慢得多。

\"\"

结论

将发现功能与实际数据管道分离让我们能够快速深入了解原始监控数据。元数据存储有助于限制需要查询的数据范围,从而显著提高整体搜索吞吐量。这种方法还可以保护原始数据存储免受发现服务的影响,从而为后端存储节省了大量的计算资源。

查看英文原文:https://www.ebayinc.com/stories/blogs/tech/an-approach-for-metadata-store-on-large-volume-data-sets/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/449501.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

职业发展 先“立功”还是先“安内”?

导读:职业生涯更上一层楼,章良踌躇满志,想在短期内建功立业,奠定江湖地位。但他清楚,自己运筹中的分公司服务升级计划,对公司整体和自己的职业生涯都非常有利,却将不可避免地转移老将掌握的部分…

kong入门实战

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到教程。 安装kong-database docker run -d --name kong-database \-p 5432:5432 \-e "POSTGRES_USERkong" \-e "POSTGRES_DBkong&…

PAT A1048

示例思想中提到了二分以及two point概念,这个需要后面进行总结;这个示例也给出了一个新的思路。对于两个数字和m,查找两个加数,可以进行i和m-i的枚举,通过遍历数组查看两个加数是否存在,来进行遍历&#xf…

CentOS 7 防火墙操作

导语 今天说下防火墙的操作。CentOS 6 的防火墙是 iptables,CentOS 7 默认的是 firewall,以前的操作不再适用。 查看、开启 服务器刚刚重启完毕,先来看下防火墙的状态,输入 systemctl status firewalld 进行查看 这里是关闭的&…

[python作业AI毕业设计博客]比Selenium IDE更好用的录制工具: Katalon Recorder

Selenium IDE(集成开发环境 Integrated Development Environment)是用于构建测试脚本的原型工具。 它是一个Firefox插件,提供了易于使用的界面,用于开发自动化测试。 但是最新的Selenium IDE总是弹出一系列如下的对话框,不能直接录制&#xf…

价值投资/指标选股(akshare)

利用akshare的数据源,可以获取所有的股票数据以及公开的财务数据,可以进行条件筛选,获取满足条件的股票。 这套模板可以用于价值投资,指标选股。选股周期为日线级别。然后结果可以邮箱发送。 import time import akshare as ak #…

有前途的人工智能大数据分析相关职业:Python数据科学入门之路

2019独角兽企业重金招聘Python工程师标准>>> 为什么学习Python数据科学? Python是数据科学职业所需的宝贵技能之一。Python是数据科学的首选编程语言。 2016年,它超越了R on Kaggle,这是数据科学竞赛的首选平台。2017年&#xff0…

STL 容器简介:C++ 容器:顺序性容器、关联式容器和容器适配器

STL标准容器类简介 标准容器类说明顺序性容器vector从后面快速的插入与删除,直接访问任何元素deque从前面或后面快速的插入与删除,直接访问任何元素list双链表,从任何地方快速插入与删除关联容器set快速查找,不允许重复值multise…

用友云开发者中心助你上云系列之在线调试

现在,大家开始越来越多的谈论到高可用架构的互联网应用。什么是高可用?高可用HA(High Availability)是分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计减少系统不能提供服务的时间。当我们谈论…

解决jboss.resteasy.spi.UnhandledException: Response is committed, can‘t handle exception

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到教程。 报错如题,如图: 我的情况是:项目作压测,这个接口请求量不大时是OK的 ,当达到…

linux下如何做ghost,又简单又方便,很实用的方法!!!

Linux 做ghost 使用指南。 转载时请注明本博客地址。 1. 使用unetbootin-windows-585.exe 软件做 ubuntu 的liveusb ,一定是做liveusb,不是liveCD,如果你做的是liveCD,要把做好的文件拷出来,否则,重…

解决org.hibernate.loader.custom.NonUniqueDiscoveredSqlAliasException: Encountered a duplicated sql ...

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到教程。 报错如题: org.hibernate.loader.custom.NonUniqueDiscoveredSqlAliasException: Encountered a duplicated sql alias [id]…

Spring WebFlux 响应式编程学习笔记(一)

各位Javaer们,大家都在用SpringMVC吧?当我们不亦乐乎的用着SpringMVC框架的时候,Spring5.x又悄(da)无(zhang)声(qi)息(gu)的推出了Spring WebFlux。web? 不是已经有SpringMVC这么好用的东西了么,为啥又冒出个WebFlux?…

Django Rest Framework -解析器

基本代码结构 urls.py rom django.conf.urls import url, include from web.views.s5_parser import TestViewurlpatterns [url(rtest/, TestView.as_view(), nametest), ]views.py from rest_framework.views import APIView from rest_framework.response import Response f…

U盘版便携式Linux制作, casper-rw 解析

一直都在想,不管用谁的电脑,我都可以得到一个完全一致的工作环境,上面有我喜爱的软件,有我保存的重要资料,甚至浏览器的各种偏好都得一模一样!现在的云计算技术可以部分解决这个问题,但是远远不…

canvas反向裁剪技巧

我们都知道在canvas 可以通过clip来实现剪裁功能,其步骤一般是先设置要裁剪的区域(路径),然后通过ctx.clip()的实现裁剪,裁剪之后,后续的绘制只能在裁剪的区域显示效果,比如如下一段代码&#x…

set 和select 的区别

简单赋值是没有区别的 转载于:https://www.cnblogs.com/bingyizhihun/p/10597908.html

马上有钱:揭密25种成为有钱人的方法(图)

1、做你真正感兴趣的事—你会花很多时间在上面,因此你一定要感兴趣才行,如果不是这样的话,你不愿意把时间花在上面,就得不到成功。 2、自己当老板。为别人打工,你绝不会变成巨富,老板一心一意地缩减开支&a…

无人承运平台系统流程图

转载于:https://www.cnblogs.com/procedureMonkey/p/10598052.html

年买笔记本的8个小技巧 最适合自己才最好(组图)

显然,智能手机和平板在一定程度上可以替代传统电脑,让我们可以随时随地上网、使用各种应用。不过,传统电脑也拥有它的不可替代性,比如移动办公、视频编辑、玩游戏,笔记本电脑可能是个更好的选择。 作为一种成熟的电脑…