Tail Recursion尾递归

什么是尾递归

Tail Recursion /teɪl rɪˈkɜːrʒn/

In traditional recursion, the typical model is that you perform your recursive calls first, and then you take the return value of the recursive call and calculate the result. In this manner, you don’t get the result of your calculation until you have returned from every recursive call.

In tail recursion, you perform your calculations first, and then you execute the recursive call, passing the results of your current step to the next recursive step. This results in the last statement being in the form of (return (recursive-function params)). Basically, the return value of any given recursive step is the same as the return value of the next recursive call.

示例一 : 累加

Consider a simple function that adds the first N integers. (e.g. sum(5) = 1 + 2 + 3 + 4 + 5 = 15).

Here is a simple JavaScript implementation that uses recursion:

function recsum(x) {if (x === 1) {return x;} else {return x + recsum(x - 1);}
}

If you called recsum(5), this is what the JavaScript interpreter would evaluate:

recsum(5)
5 + recsum(4)
5 + (4 + recsum(3))
5 + (4 + (3 + recsum(2)))
5 + (4 + (3 + (2 + recsum(1))))
5 + (4 + (3 + (2 + 1)))
15

Note how every recursive call has to complete before the JavaScript interpreter begins to actually do the work of calculating the sum.

Here’s a tail-recursive version of the same function:

function tailrecsum(x, running_total = 0) {if (x === 0) {return running_total;} else {return tailrecsum(x - 1, running_total + x);}
}

Here’s the sequence of events that would occur if you called tailrecsum(5), (which would effectively be tailrecsum(5, 0), because of the default second argument).

tailrecsum(5, 0)
tailrecsum(4, 5)
tailrecsum(3, 9)
tailrecsum(2, 12)
tailrecsum(1, 14)
tailrecsum(0, 15)
15

In the tail-recursive case, with each evaluation of the recursive call, the running_total is updated.

示例二 : 斐波那契数列##

在数学上,斐波那契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 3,n ∈ N*)。

换成Java代码如下:

public static long classicFibonacci(long num) {if(num <= 0) {return 0;}else if(num == 1 || num == 2) {return 1;}else {return classicFibonacci(num - 1) + classicFibonacci(num - 2);}
}

用尾递归方法改造一下

public static long tailRecursionFibonacci(long num) {if(num <= 0) {return 0;}else if(num == 1 || num == 2) {return 1;}else {return tailRecursionFibonacci(num, 1, 1, 2);}
}public static long tailRecursionFibonacci(long num, long first, long second, long index) {if(num == index) {return second;}else {return tailRecursionFibonacci(num, second, first + second, index + 1);//尾递归调用}
}

为什么需要尾递归

因为性能。

The consequence of tail recursion is that once you are ready to perform your next recursive step, you don’t need the current stack frame any more. This allows for some optimization. In fact, with an appropriately written compiler, you should never have a stack overflow snicker with a tail recursive call. Simply reuse the current stack frame for the next recursive step.

那么,我们不妨测试一下示例二:斐波那契数列中两种算法。测试方法是用两种算法得出斐波那契数列的第46项是多少且分别消耗多长时间。

首先,用classicFibonacci计算得出斐波那契数列的第46项。

@Test
public void testClassicFibonacci() {System.out.println(classicFibonacci(46));
}

运行结果如下

斐波那契数列的第46项是1836311903,用classicFibonacci得出斐波那契数列的第46项所消耗的时间是43.026秒


接着,用有尾递归方式tailRecursionFibonacci计算得出斐波那契数列的第46项。

@Test
public void testTailRecursionFibonacci() {System.out.println(tailRecursionFibonacci(46));
}

斐波那契数列的第46项是1836311903,跟classicFibonacci的一致。用有尾递归方式的tailRecursionFibonacci得出斐波那契数列的第46项所消耗的时间是0.035秒,是classicFibonacci的1229倍,差距悬殊。

如果继续用classicFibonacci得出斐波那契数列第n项(n>46),将消耗更长时间,甚至天荒地老也没有算完。

参考资料

  1. What is tail recursion?
  2. 斐波那契数列

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/445958.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FFmpeg源代码简单分析-解码-av_read_frame()

参考链接 ffmpeg 源代码简单分析 &#xff1a; av_read_frame()_雷霄骅的博客-CSDN博客_ffmpeg frame av_read_frame() ffmpeg中的av_read_frame()的作用是读取码流中的音频若干帧或者视频一帧。例如&#xff0c;解码视频的时候&#xff0c;每解码一个视频帧&#xff0c;需要…

FFmpeg源代码简单分析-解码-avformat_close_input()

参考链接 FFmpeg源代码简单分析&#xff1a;avformat_close_input()_雷霄骅的博客-CSDN博客_avformat_close_input avformat_close_input() 本文简单分析FFmpeg的avformat_close_input()函数。该函数用于关闭一个AVFormatContext&#xff0c;一般情况下是和avformat_open_inp…

FFmpeg源代码简单分析-编码-avformat_alloc_output_context2()

参考链接 FFmpeg源代码简单分析&#xff1a;avformat_alloc_output_context2()_雷霄骅的博客-CSDN博客_avformat_alloc_context avformat_alloc_output_context2() 在基于FFmpeg的视音频编码器程序中&#xff0c;该函数通常是第一个调用的函数&#xff08;除了组件注册函数av…

FFmpeg源代码简单分析-编码-avformat_write_header()

参考链接 FFmpeg源代码简单分析&#xff1a;avformat_write_header()_雷霄骅的博客-CSDN博客_avformat_write_header avformat_write_header() FFmpeg写文件用到的3个函数&#xff1a;avformat_write_header()&#xff0c;av_write_frame()以及av_write_trailer()其中av_writ…

《深入理解JVM.2nd》笔记(二):Java内存区域与内存溢出异常

文章目录概述运行时数据区域程序计数器Java虚拟机栈本地方法栈Java堆方法区运行时常量池直接内存HotSpot虚拟机对象探秘对象的创建第一步第二步第三步第四步最后一脚对象的内存布局对象头Header第一部分第二部分实例数据Instance对齐填充Padding对象的访问定位句柄直接指针对象…

《深入理解JVM.2nd》笔记(三):垃圾收集器与垃圾回收策略

文章目录概述对象已死吗引用计数算法可达性分析算法再谈引用finalize()&#xff1a;生存还是死亡回收方法区垃圾收集算法标记-清除算法复制算法标记-整理算法分代收集算法HotSpot的算法实现枚举根结点安全点安全区域垃圾收集器SerialParNewParallel ScavengeSerial OldParallel…

FFmpeg源代码简单分析-编码-av_write_frame()

参考链接 FFmpeg源代码简单分析&#xff1a;av_write_frame()_雷霄骅的博客-CSDN博客_av_write_frame av_write_frame() av_write_frame()用于输出一帧视音频数据&#xff0c;它的声明位于libavformat\avformat.h&#xff0c;如下所示。 /*** Write a packet to an output me…

《深入理解JVM.2nd》笔记(四):虚拟机性能监控与故障处理工具

文章目录概述JDK的命令行工具jps&#xff1a;虚拟机进程状况工具jstat&#xff1a;虚拟机统计信息监视工具jinfo&#xff1a;Java配置信息工具jmap&#xff1a;Java内存映像工具jhat&#xff1a;虚拟机堆转储快照分析工具jstack&#xff1a;Java堆栈跟踪工具HSDIS&#xff1a;J…

FFmpeg源代码简单分析-编码-av_write_trailer()

参考链接&#xff1a; FFmpeg源代码简单分析&#xff1a;av_write_trailer()_雷霄骅的博客-CSDN博客_av_malloc av_write_trailer() av_write_trailer()用于输出文件尾&#xff0c;它的声明位于libavformat\avformat.h&#xff0c;如下所示 /*** Write the stream trailer to…

FFmpeg源代码简单分析-其他-日志输出系统(av_log()等)

参考链接 FFmpeg源代码简单分析&#xff1a;日志输出系统&#xff08;av_log()等&#xff09;_雷霄骅的博客-CSDN博客_ffmpeg源码分析 日志输出系统&#xff08;av_log()等&#xff09; 本文分析一下FFmpeg的日志&#xff08;Log&#xff09;输出系统的源代码。日志输出部分的…

FFmpeg源代码简单分析-其他-AVClass和AVoption

参考链接 FFmpeg源代码简单分析&#xff1a;结构体成员管理系统-AVClass_雷霄骅的博客-CSDN博客FFmpeg源代码简单分析&#xff1a;结构体成员管理系统-AVOption_雷霄骅的博客-CSDN博客 概述 AVOption用于在FFmpeg中描述结构体中的成员变量。它最主要的作用可以概括为两个字&a…

FFmpeg源代码简单分析-其他-libswscale的sws_getContext()

参考链接 FFmpeg源代码简单分析&#xff1a;libswscale的sws_getContext()_雷霄骅的博客-CSDN博客 libswscale的sws_getContext() FFmpeg中类库libswsscale用于图像处理&#xff08;缩放&#xff0c;YUV/RGB格式转换&#xff09;libswscale是一个主要用于处理图片像素数据的类…

FFmpeg源代码简单分析-其他-libswscale的sws_scale()

参考链接 FFmpeg源代码简单分析&#xff1a;libswscale的sws_scale()_雷霄骅的博客-CSDN博客_bad dst image pointers libswscale的sws_scale() FFmpeg的图像处理&#xff08;缩放&#xff0c;YUV/RGB格式转换&#xff09;类库libswsscale中的sws_scale()函数。libswscale是一…

FFmpeg源代码简单分析-其他-libavdevice的gdigrab

参考链接 FFmpeg源代码简单分析&#xff1a;libavdevice的gdigrab_雷霄骅的博客-CSDN博客_gdigrab libavdevice的gdigrab GDIGrab用于在Windows下屏幕录像&#xff08;抓屏&#xff09;gdigrab的源代码位于libavdevice\gdigrab.c。关键函数的调用关系图如下图所示。图中绿色背…

Ubuntu安装GmSSL库适用于ubuntu18和ubuntu20版本

参考链接 编译与安装【GmSSL】GmSSL 与 OpenSSL 共存的安装方法_阿卡基YUAN的博客-CSDN博客_openssl和gmssl在Linux下安装GmSSL_百里杨的博客-CSDN博客_安装gmssl ubuntu18操作 需要超级管理员权限本人将下载的安装包master.zip和安装的位置都设定在/usr/local下创建文件夹/u…

Windows7右键菜单栏添加打开cmd项

背景简介 众所周知&#xff0c;在Linux桌面操作系统中的工作目录窗口中&#xff0c;单击鼠标右键&#xff0c;弹出的菜单栏通常有一项“打开终端”&#xff0c;然后移动鼠标点击该项&#xff0c;就可以打开Shell窗口&#xff0c;在当前工作目录进行命令行操作。 但是&#xf…

在ubuntu环境下执行openssl编译和安装

参考链接 工具系列 | Ubuntu18.04安装Openssl-1.1.1_Tinywan的技术博客_51CTO博客密码学专题 openssl编译和安装_MY CUP OF TEA的博客-CSDN博客_openssl 编译安装 下载 /source/index.html编译 使用命令sudo tar -xvzf openssl-1.1.1q.tar.gz 解压。使用cd openssl-1.1.1q/进…

chrome 使用gpu 加速_一招解决 Chrome / Edge 卡顿缓慢 让浏览器重回流畅顺滑

最近一段时间,我发现电脑上的 Chrome 谷歌浏览器越用越卡了。特别是网页打开比较多,同时还有视频播放时,整个浏览器的响应速度都会变得非常缓慢,视频也会卡顿掉帧。 我用的是 iMac / 32GB 内存 / Intel 四核 i7 4Ghz CPU,硬件性能应该足以让 Chrome 流畅打开几十个网页标签…

CLion运行程序时添加命令行参数 即设置argv输入参数

参考链接 CLion运行程序时添加命令行参数_三丰杂货铺的博客-CSDN博客_clion命令行参数 操作流程 Run -> Edit -> Configuration -> Program arguments那里添内容最快捷的方式是&#xff0c;点击锤子编译图标和运行图标之间的的图标&#xff0c;进行Edit Configurati…

openssl实现双向认证教程(服务端代码+客户端代码+证书生成)

参考链接 openssl实现双向认证教程&#xff08;服务端代码客户端代码证书生成&#xff09;_huang714的博客-CSDN博客_ssl_ctx_load_verify_locations基于openssl实现https双向身份认证及安全通信_tutu-hu的博客-CSDN博客_基于openssl实现 注意事项 openssl版本差异很可能导致程…