caffe开始训练自己的模型(转载并验证过)

学习caffe中踩了不少坑,这里我参考了此博主的文章,并体会到了如何训练自己的模型:http://www.cnblogs.com/denny402/p/5083300.html

学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中。因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程。

一、准备数据

有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练。但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了google的)。第二个原因是数据太大了。。。

我去网上找了一些其它的图片来代替,共有500张图片,分为大巴车、恐龙、大象、鲜花和马五个类,每个类100张。需要的同学,可到我的网盘下载:http://pan.baidu.com/s/1nuqlTnN

编号分别以3,4,5,6,7开头,各为一类。我从其中每类选出20张作为测试,其余80张作为训练。因此最终训练图片400张,测试图片100张,共5类。我将图片放在caffe根目录下的data文件夹下面。即训练图片目录:data/re/train/ ,测试图片目录: data/re/test/

二、转换为lmdb格式

具体的转换过程,可参见我的前一篇博文:Caffe学习系列(11):图像数据转换成db(leveldb/lmdb)文件

首先,在examples下面创建一个myfile的文件夹,来用存放配置文件和脚本文件。然后编写一个脚本create_filelist.sh,用来生成train.txt和test.txt清单文件

# sudo mkdir examples/myfile
# sudo vi examples/myfile/create_filelist.sh

编辑此文件,写入如下代码,并保存

按 Ctrl+C 复制代码

 

按 Ctrl+C 复制代码

然后,运行此脚本

# sudo sh examples/myfile/create_filelist.sh

成功的话,就会在examples/myfile/ 文件夹下生成train.txt和test.txt两个文本文件,里面就是图片的列表清单。

接着再编写一个脚本文件,调用convert_imageset命令来转换数据格式。

# sudo vi examples/myfile/create_lmdb.sh

插入:

按 Ctrl+C 复制代码

 

按 Ctrl+C 复制代码

因为图片大小不一,因此我统一转换成256*256大小。运行成功后,会在 examples/myfile下面生成两个文件夹img_train_lmdb和img_test_lmdb,分别用于保存图片转换后的lmdb文件。

三、计算均值并保存

图片减去均值再训练,会提高训练速度和精度。因此,一般都会有这个操作。

caffe程序提供了一个计算均值的文件compute_image_mean.cpp,我们直接使用就可以了

# sudo build/tools/compute_image_mean examples/myfile/img_train_lmdb examples/myfile/mean.binaryproto
compute_image_mean带两个参数,第一个参数是lmdb训练数据位置,第二个参数设定均值文件的名字及保存路径。
运行成功后,会在 examples/myfile/ 下面生成一个mean.binaryproto的均值文件。

四、创建模型并编写配置文件

模型就用程序自带的caffenet模型,位置在 models/bvlc_reference_caffenet/文件夹下, 将需要的两个配置文件,复制到myfile文件夹内

# sudo cp models/bvlc_reference_caffenet/solver.prototxt examples/myfile/
# sudo cp models/bvlc_reference_caffenet/train_val.prototxt examples/myfile/

修改其中的solver.prototxt

# sudo vi examples/myfile/solver.prototxt

复制代码

net: "examples/myfile/train_val.prototxt"
test_iter: 2
test_interval: 50
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize: 100
display: 20
max_iter: 500
momentum: 0.9
weight_decay: 0.005
solver_mode: GPU

复制代码

100个测试数据,batch_size为50,因此test_iter设置为2,就能全cover了。在训练过程中,调整学习率,逐步变小。

修改train_val.protxt,只需要修改两个阶段的data层就可以了,其它可以不用管。

复制代码

name: "CaffeNet"
layer {name: "data"type: "Data"top: "data"top: "label"include {phase: TRAIN}transform_param {mirror: truecrop_size: 227mean_file: "examples/myfile/mean.binaryproto"}data_param {source: "examples/myfile/img_train_lmdb"batch_size: 256backend: LMDB}
}
layer {name: "data"type: "Data"top: "data"top: "label"include {phase: TEST}transform_param {mirror: falsecrop_size: 227mean_file: "examples/myfile/mean.binaryproto"}data_param {source: "examples/myfile/img_test_lmdb"batch_size: 50backend: LMDB}
}

复制代码

实际上就是修改两个data layer的mean_file和source这两个地方,其它都没有变化 。

五、训练和测试

如果前面都没有问题,数据准备好了,配置文件也配置好了,这一步就比较简单了。

# sudo build/tools/caffe train -solver examples/myfile/solver.prototxt

运行时间和最后的精确度,会根据机器配置,参数设置的不同而不同。我的是gpu+cudnn运行500次,大约8分钟,精度为95%。

 

分类: caffe

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/444665.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode169. 多数元素

给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的,并且给定的数组总是存在多数元素。 示例 1: 输入: [3,2,3] 输出: 3 示例 2: 输入: [2,2,1,1,1,2,2] 输出: 2 思路&…

Git(9)-diff

分支1. diff in Linux/Unix2. diff in Git3. git diff 两点语法Linux/Unix 系统中存在diff 命令,可以用来显示两个文本/工作路径的差异。Git diff 在此基础上进行的扩展。 1. diff in Linux/Unix Linux 系统中的diff 命令:提供了一个文件如何转化为另一…

图像拼接(一):柱面投影+模板匹配+渐入渐出融合

这种拼接方法的假设前提是:待拼接的两幅图像之间的变换模型是平移模型,即两幅图像同名点位置之间只相差两个未知量:ΔxΔx 和ΔyΔy,自由度为2,模型收得最紧。所以只有所有图像都是用同一水平线或者同一已知倾斜角的摄…

图像拼接(二):OpenCV同时打开两个摄像头捕获视频

使用OpenCV实现同时打开两个USB摄像头,并实时显示视频。如果未检测有两个摄像头,程序会结束并发出“摄像头未安装好”的警告。这里推荐一个小巧的摄像头视频捕捉软件:amcap,使用它可以方便的检查每个摄像头是否能正常工作。 捕获…

Git(10)-merge

Merge1. 无冲突合并2. 有冲突合并-手动解决3. git diff in merge4. 废弃合并5. 合并策略merge相关的操作的命令 git checkout master git merge alternate # 解决冲突 ..... git add file_1 git commit -m "Add slternate line 5, 6" git reset --hard HEAD # b…

elasticsearch的Linux下安装报错问题解决

1.启动报错如下: vim /etc/security/limits.conf 然后修改如下 * soft nofile 65536 * hard nofile 65536sudo vi /etc/pam.d/common-session 添加 session required pam_limits.so sudo vi /etc/pam.d/common-session-noninteractive 添加 session required pam_limits.so…

leetcode120. 三角形最小路径和

给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径和为 11(即,2 3 5 1 11&#xff0…

Elasticsearchan相关插件和工具安装

1、下载elasticsearch-head的源码包 地址:https://github.com/mobz/elasticsearch-head/releases 2、安装node运行环境 地址:https://nodejs.org/en/download/ 3、安装完node之后编译elasticsearch-head 执行npm install -g grunt-cli编译源码 执行…

Git(11)-cherry-pick、reset、rebase

更改提交,版本回退1.get reset 重置HEAD指针的指向2.git cherry-pick3.git revert4.git commit --amend修改提交5.git rebase 变基提交5.1 git rebase --onto5.2rebase 产生冲突,解决冲突/终止变基5.3git rebase -i6. rebase Vs mergegit 提供了【修改】…

Elasticsearch集群节点配置详解

注意:如果是在局域网中运行elasticsearch集群也是很简单的,只要cluster.name设置一致,并且机器在同一网段下,启动的es会自动发现对方,组成集群。 三、配置浅涉 elasticsearch的config文件夹里面有两个配置文件&#…

MongoDB修改器使用

欢迎关注我的新微信公众号 ipgame,有什么问题可以提供交流的平台,欢迎大家讨论。 对于文档的更新除替换外,针对某个或多个文档只需要部分更新可使用原子的更新修改器,能够高效的进行文档更新。更新修改器是中特殊的键, 用来指定复杂的操作,比如增加、删除或者调整键,还…

Git(12)-stash, reflog

git stash1. git stash2. reflog命令概览git stash save "WIP:xxxxx" # save后可以跟笔记,WIP:work in process git stash list # 查看存储状态栈的条目 git stash pop # 当前工作目录和索引还原至最近一次save操作的内容…

cmake生成Win64位工程

使用cmake编译64的dll 一开始使用cmake --build .来生成了dll,在导入到java项目中使用的时候,才发现是32位的。导致程序不能正常运行,报错如下: Exception in thread "main" java.lang.UnsatisfiedLinkError Cant load…

leetcode 106. 从中序与后序遍历序列构造二叉树

根据一棵树的中序遍历与后序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 中序遍历 inorder [9,3,15,20,7] 后序遍历 postorder [9,15,7,20,3] 返回如下的二叉树: 3 / \ 9 20 / \ 15 7 思路:和前…

Mat矩阵(图像容器)的创建及CV_8UC1,CV_8UC2等参数详解

一)Mat矩阵(图像容器)创建时CV_8UC1,CV_8UC2等参数详解 1--Mat不但是一个非常有用的图像容器类,同时也是一个通用的矩阵类 2--创建一个Mat对象的方法很多 3--使用Mat图像容器类创建Mat类的对象 //! default constructor Mat(); //! constructs …

TensorFlow(1)-模型相关基础概念

TensorFlow-11.Graph对象2.Session对象3.Variabels变量4. placeholders与feed_dict5. tf.train.Saver() 模型参数保存、加载Tensorflow 中文官网教程–2.0版本的官方教程 TensorFlow教程:TensorFlow快速入门教程(非常详细) pytorch Vs tensor…

memcache的使用入门C++代码

下载源码编译,memcached就是生成的主程序,启动可指定端口,memcached作为server端,依然是我们熟悉的cs模式,使用两个client一个setkey,一个getkey一百万个做测试。 ./memcached -d -m 300 -p 11211 -u root…

leetcode78 子集

给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。 说明:解集不能包含重复的子集。 示例: 输入: nums [1,2,3] 输出: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ] 思路&…

Fiddler抓包工具使用

先下载Fiddler 欢迎关注我的新微信公众号 ipgame,有什么问题可以提供交流的平台,欢迎大家讨论。 电脑最好是笔记本,这样能和手机保持统一局域网内;其他不多说,直接说步骤了。 一.对PC(笔记本&#xff0…

Tensorboard--模型可视化工具

Tensorboard1.tensorboard in tensorflow1.1 tensorboard的启动过程1.2 tf.summary 可视化类型1.3 tf.summary 使用demo2.tensorboard in pytorch2.1 SummaryWriter 使用demo12.2 tSummaryWriter 使用demo22.3 tensorboard 数据再读取tensorboard in tensorflow :te…