那个谷歌的网红扔鸡蛋的题,来看看教科书式的回答

 leetcode顶级难题,谷歌面试天天问,来看看吧,带你来一步一步达到最优解。

谷歌不知道问了多少遍,蓝桥杯也出现过,leetcode上是顶级难题,到底是什么题能如此频繁地出现?我们一探究竟吧。

原题描述:

        x星球的居民脾气不太好,但好在他们生气的时候唯一的异常举动是:摔手机。
各大厂商也就纷纷推出各种耐摔型手机。x星球的质监局规定了手机必须经过耐摔测试,并且评定出一个耐摔指数来,之后才允许上市流通。
        x星球有很多高耸入云的高塔,刚好可以用来做耐摔测试。塔的每一层高度都是一样的,与地球上稍有不同的是,他们的第一层不是地面,而是相当于我们的2楼。
        如果手机从第7层扔下去没摔坏,但第8层摔坏了,则手机耐摔指数=7。

特别地,如果手机从第1层扔下去就坏了,则耐摔指数=0。如果到了塔的最高层第n层扔没摔坏,则耐摔指数=n

        为了减少测试次数,从每个厂家抽样3部手机参加测试。
        某次测试的塔高为1000层,如果我们总是采用最佳策略,在最坏的运气下最多需要测试多少次才能确定手机的耐摔指数呢?
        请填写这个最多测试次数。

        注意:需要填写的是一个整数,不要填写任何多余内容

答案19

 

文章目的

 

读完题后,我们追求的不是要写出得数,而是用代码实现方法,并思考是否可以优化。

其实本题的方法是非常多种多样的。非常适合锻炼思维。

我们把问题扩展到n个手机来思考。

手机k个,楼n层,最终结果M次。

时空复杂度目录

暴力:                        O(N!)

DP:                            O(N*N*K)  O(N*K)

压空间:                    O(N*N*K)  O(N)

四边形不等式优化     O(N*N)       

换思路:                    O(K*M)

最优:                         O(K*M)    O(N)

文末有测试,大家可以去直观感受一下各方法运行的效率

二分

 

容易想到二分思路:不断二分范围,取中点,测验是否会摔坏,然后缩小一半范围,继续尝试,很显然,答案为logN(2为底)

但是,二分得出的答案是不对的。注意:我们要保证在都手机摔完之前,能确定耐摔指数到底是多少。

举例:

我们在500楼摔坏了,在250楼摔,又坏了。接下来,我们只能从1楼开始一层一层试

因为如果我们在125层摔坏了,就没有手机可以用,也就是永远都测不出来,而这是不被允许的。其实我们连测第2层都不敢测,因为在第2层摔坏了,我们就无法知道手机在第一层能否被摔坏。所以只有一部手机时,我们只敢从第一层开始摔。

 

尝试较优的策略

 

既然二分是不对的,我们继续分析:摔手机的最优策略到底是如何的。

只有一部手机时,我们只敢从第一层开始摔。

有两部手机的时候,我们就敢隔层摔了,因为一部手机坏了,我们还有另一部来继续试。

这时就有点意思了,我们分析情况:

情况1)假设我们第一部手机在i层摔坏了,然后最坏情况还要试多少次?这时我们还剩一部手机,所以只敢一层一层试,最坏情况要试到i-1层,共试了i次。

情况2)假设我们第一部手机在i层试了,但是没摔坏,然后最坏情况还要试多少次?(这时发现算情况2时依旧是相似的问题,确定了可以用递归来解。)

 

最优解(最小值)是决策后两种情况的最差情况(最大值),我们的本能感觉应该就是让最差情况好一点,让最好情况差一点,这样比较接近正确答案。比如两部手机,一百层,我们可以在50层摔,没坏,这一次就很赚,我们没摔坏手机还把范围缩小了50层。如果坏了,就比较坑了,我们要从1试到50。虽然可能缩小一半,但是最坏情况次数太多,所以肯定要从某个低于五十的层开始尝试。

(以上几行是为了让读者理解决策,下面正文分析)

 

归纳表达式

 

假设我们的楼一共n层,我们的i可以取1-n任意值,有很多种可能的决策,我们的最小值设为f(n,k),n代表楼高(范围为1-100或101-200其实都一样),k代表手机数.

我们假设的决策是在第i楼扔

对于情况一,手机少了一部,并且我们确定了范围,一定在第i楼以下,所以手机-1,层数为i-1,这时f(n,k)=f(i-1,k-1).+1

对于情况二,手机没少,并且我们确定了范围,一定在第i楼之上,所以手机数不变,而层数-i层,这时f(n,k)=f(n-i,k).+1

归纳出

f(n,k)=min(  max(f(i-1,k-1) ,f(n-i,k) ) i取1-n任意数    )+1

简单总结:怎么确定第一个手机在哪扔?每层都试试,哪层的最坏情况(max)最好(min),就去哪层扔。

 

写出暴力递归

按照分析出来的表达式,我们可以写出暴力递归:

	public static int solution1(int nLevel, int kChess) {if (nLevel == 0) {return 0;}//范围缩小至0if (kChess == 1) {return nLevel;}//每层依次试int min = Integer.MAX_VALUE;//取不影响结果的数for (int i = 1; i != nLevel + 1; i++) {//尝试所有决策,取最优min = Math.min(min,Math.max(Process1(i - 1, kChess - 1),Process1(nLevel - i, kChess)));}return min + 1;//别忘了加上本次}

 

改为动态规划

 

具体思路如下

https://blog.csdn.net/hebtu666/article/details/79912328

	public static int solution2(int nLevel, int kChess) {if (kChess == 1) {return nLevel;}int[][] dp = new int[nLevel + 1][kChess + 1];for (int i = 1; i != dp.length; i++) {dp[i][1] = i;}for (int i = 1; i != dp.length; i++) {for (int j = 2; j != dp[0].length; j++) {int min = Integer.MAX_VALUE;for (int k = 1; k != i + 1; k++) {min = Math.min(min,Math.max(dp[k - 1][j - 1], dp[i - k][j]));}dp[i][j] = min + 1;}}return dp[nLevel][kChess];}

 

压缩空间

 

我们发现,对于状态转移方程,只和上一盘排的dp表和左边的dp表有关,所以我们不需要把值全部记录,用两个长度为n的数组不断更新即可(具体对dp压缩空间的思路,也是很重要的,我在其它文章中有提过,在这里就不写了)

	public static int solution3(int nLevel, int kChess) {if (kChess == 1) {return nLevel;}int[] preArr = new int[nLevel + 1];int[] curArr = new int[nLevel + 1];for (int i = 1; i != curArr.length; i++) {curArr[i] = i;}//初始化for (int i = 1; i != kChess; i++) {//先交换int[] tmp = preArr;preArr = curArr;curArr = tmp;//然后打新的一行for (int j = 1; j != curArr.length; j++) {int min = Integer.MAX_VALUE;for (int k = 1; k != j + 1; k++) {min = Math.min(min, Math.max(preArr[k - 1], curArr[j - k]));}curArr[j] = min + 1;}}return curArr[curArr.length - 1];}

 

四边形不等式优化

 

四边形不等式是一种比较常见的优化动态规划的方法

定义:如果对于任意的a1≤a2<b1≤b2,有m[a1,b1]+m[a2,b2]≤m[a1,b2]+m[a2,b1],那么m[i,j]满足四边形不等式。

对s[i,j-1]≤s[i,j]≤s[i+1,j]的证明:

设mk[i,j]=m[i,k]+m[k,j],s[i,j]=d

对于任意k<d,有mk[i,j]≥md[i,j](这里以m[i,j]=min{m[i,k]+m[k,j]}为例,max的类似),接下来只要证明mk[i+1,j]≥md[i+1,j],那么只有当s[i+1,j]≥s[i,j]时才有可能有mk[i+1,j]≥md[i+1,j]

(mk[i+1,j]-md[i+1,j])-(mk[i,j]-md[i,j])

=(mk[i+1,j]+md[i,j])-(md[i+1,j]+mk[i,j])

=(m[i+1,k]+m[k,j]+m[i,d]+m[d,j])-(m[i+1,d]+m[d,j]+m[i,k]+m[k,j])

=(m[i+1,k]+m[i,d])-(m[i+1,d]+m[i,k])

∵m满足四边形不等式,∴对于i<i+1≤k<d有m[i+1,k]+m[i,d]≥m[i+1,d]+m[i,k]

∴(mk[i+1,j]-md[i+1,j])≥(mk[i,j]-md[i,j])≥0

∴s[i,j]≤s[i+1,j],同理可证s[i,j-1]≤s[i,j]

证毕

 

通俗来说,

优化策略1)我们在求k+1手机n层楼时,最后发现,第一个手机在m层扔导致了最优解的产生。那我们在求k个手机n层楼时,第一个手机的策略就不用尝试m层以上的楼了。

优化策略2)我们在求k个手机n层楼时,最后发现,第一个手机在m层扔导致了最优解的产生。那我们在求k个手机n+1层楼时,就不用尝试m层以下的楼了。

	public static int solution4(int nLevel, int kChess) {if (kChess == 1) {return nLevel;}int[][] dp = new int[nLevel + 1][kChess + 1];for (int i = 1; i != dp.length; i++) {dp[i][1] = i;}int[] cands = new int[kChess + 1];for (int i = 1; i != dp[0].length; i++) {dp[1][i] = 1;cands[i] = 1;}for (int i = 2; i < nLevel + 1; i++) {for (int j = kChess; j > 1; j--) {int min = Integer.MAX_VALUE;int minEnum = cands[j];int maxEnum = j == kChess ? i / 2 + 1 : cands[j + 1];//优化策略for (int k = minEnum; k < maxEnum + 1; k++) {int cur = Math.max(dp[k - 1][j - 1], dp[i - k][j]);if (cur <= min) {min = cur;cands[j] = k;//最优解记录层数}}dp[i][j] = min + 1;}}return dp[nLevel][kChess];}

注:对于四边形不等式的题目,比赛时不需要严格证明

通常的做法是打表出来之后找规律,然后大胆猜测,显然可得。(手动滑稽)

 

换一种思路

 

有时,最优解并不是优化来的。

当你对着某个题冥思苦想了好久,无论如何也不知道怎么把时间优化到合理范围,可能这个题的最优解就不是这种思路,这时,试着换一种思路思考,可能会有奇效。

(比如训练时一道贪心我死活往dp想,肝了两个小时以后,不主攻这个方向的队友三分钟就有贪心思路了,泪目,不要把简单问题复杂化

 

我们换一种思路想问题:

原问题:n层楼,k个手机,最多测试次数

反过来看问题:k个手机,扔m次,最多能确定多少层楼?

我们定义dp[i][j]:i个手机扔j次能确定的楼数。

分析情况:依旧是看第一部手机在哪层扔的决策,同样,我们的决策首先要保证能确定从1层某一段,而不能出现次数用完了还没确定好的情况。以这个为前提,保证了每次扔的楼层都是最优的,就能求出结果。

依旧是取最坏情况:min(情况1,情况2)

情况1)第一个手机碎了,我们就需要用剩下的i-1个手机和j-1次测试次数往下去测,dp[i-1][j-1]。那我们能确定的层数是无限的,因为本层以上的无限层楼都不会被摔坏。dp[i-1][j-1]+无穷=无穷

情况2)第一个手机没碎,那我们就看i个手机扔j-1次能确定的楼数(向上试)+当前楼高h

归纳表达式,要取最差情况,所以就是只有情况2:dp[i][j]=dp[i-1][j-1]+h

那这个h到底是什么呢?取决于我敢从哪层扔。因为次数减了一次,我们还是要考虑i个球和j-1次的最坏情况能确定多少层,我才敢在层数+1的地方扔。(这是重点)

也就是dp[i][j-1]的向上一层:h=dp[i][j-1]+1

 

总:min(情况1,情况2)=min(无穷,dp[i-1][j-1]+dp[i][j-1]+1)=dp[i-1][j-1]+dp[i][j-1]+1

这是解决k个手机,扔m次,最多能确定多少层楼?

原问题是n层楼,k个手机,最多测试次数。

所以我们在求的过程中,何时能确定的层数大于n,输出扔的次数即可

 

最优解

我们知道完全用二分扔需要logN+1次,这也绝对是手机足够情况下的最优解,我们做的这么多努力都是因为手机不够摔啊。。。。所以当我们的手机足够用二分来摔时,直接求出logN+1即可。

 

当然,我们求dp需要左边的值和左上的值:

依旧可以压缩空间,从左往右更新,previous记录左上的值。

求自己时也要注意记录,否则更新过后,后面的要用没更新过的值(左上方)就找不到了。

记录之后,求出当前数值,把记录的temp值给了previous即可。

	public static int solution5(int nLevel, int kChess) {int bsTimes = log2N(nLevel) + 1;if (kChess >= bsTimes) {return bsTimes;}int[] dp = new int[kChess];int res = 0;while (true) {res++;//压缩空间记得记录次数int previous = 0;for (int i = 0; i < dp.length; i++) {int tmp = dp[i];dp[i] = dp[i] + previous + 1;previous = tmp;if (dp[i] >= nLevel) {return res;}}}}public static int log2N(int n) {int res = -1;while (n != 0) {res++;n >>>= 1;}return res;}

 

 

 

 

本题只是填空题,第一种方法就完全能算出来,就是为了追求最优解,追求思维的锻炼。写下了本文。

 

 

测试:

暴力:                        O(N!)

DP:                            O(N*N*K)  O(N*K)

压空间:                    O(N*N*K)  O(N)

四边形不等式优化     O(N*N)       

最优:                         O(K*M)    O(N)

		long start = System.currentTimeMillis();solution1(30, 2);long end = System.currentTimeMillis();System.out.println("cost time: " + (end - start) + " ms");start = System.currentTimeMillis();solution2(30, 2);end = System.currentTimeMillis();System.out.println("cost time: " + (end - start) + " ms");start = System.currentTimeMillis();solution3(30, 2);end = System.currentTimeMillis();System.out.println("cost time: " + (end - start) + " ms");start = System.currentTimeMillis();solution4(30, 2);end = System.currentTimeMillis();System.out.println("cost time: " + (end - start) + " ms");start = System.currentTimeMillis();solution5(30, 2);end = System.currentTimeMillis();System.out.println("cost time: " + (end - start) + " ms");
/*
结果:
cost time: 7043 ms
cost time: 0 ms
cost time: 0 ms
cost time: 0 ms
cost time: 0 ms
*/

暴力时间实在是太久了,只测一个30,2

 

后四种方法测的大一些(差点把电脑测炸了,cpu100内存100):

solution(100000, 10):

solution2 cost time: 202525 ms
solution3 cost time: 38131 ms
solution4 cost time: 11295 ms
solution5 cost time: 0 ms

 

感受最优解的强大:

solution5(1000 000 000,100):0 ms

solution5(1000 000 000,10):0 ms

最优解永远都是0 ms,我也是服了。。

 

对比方法,在时间复杂度相同的条件下,空间复杂度一样会影响时间,因为空间太大的话,申请空间是相当浪费时间的。并且空间太大电脑会炸,所以不要认为空间不重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/443858.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

不骗你,没读这一篇,你不可能懂二分

上篇文章讲动态规划获得了80k浏览&#xff0c;这次的二分也值得你们一看&#xff0c;这个系列是特别用心写的&#xff0c;准备出书的哦 动态规划 3.0 引子 图书馆自习的时候,一女生背着一堆书进阅览室,结果警报响了,大妈让女生看是哪本书把警报弄响了&#xff0c;女生把书倒出…

超硬核!操作系统学霸笔记,考试复习面试全靠它

之后会发布基于基础知识的大部分算法的模拟代码合集&#xff0c;敬请关注。 进程基础 进程的基本概念 程序顺序执行的特征&#xff1a; 1&#xff09;顺序性&#xff1a;处理机严格按照程序所规定的顺序执行&#xff0c;每一步操作必须在下一步操作开始前执行 2&#xff09;封…

超硬核!学霸把操作系统经典算法给敲完了!要知行合一

上期的笔记&#xff0c;浏览快1万了&#xff0c;既然关注的人很多&#xff0c;那就发出来承诺过的算法全模拟&#xff0c;希望帮到你们。 上期的操作系统学霸笔记&#xff0c;考试复习面试全靠它 一、模拟进程调度 功能 data.h #ifndef _Data_h_ #define _Data_h_#include …

超硬核!数据结构学霸笔记,考试面试吹牛就靠它

上次发操作系统笔记&#xff0c;很快浏览上万&#xff0c;这次数据结构比上次硬核的多哦&#xff0c;同样的会发超硬核代码&#xff0c;关注吧。 超硬核&#xff01;操作系统学霸笔记&#xff0c;考试复习面试全靠它 第一次笔记&#xff08;复习c&#xff0c;课程概述&#xff…

超硬核!小白读了这篇文章,就能在算法圈混了

作为一只超级硬核的兔子&#xff0c;从来不给你说废话&#xff0c;只有最有用的干货&#xff01;这些神级算法送给你 目录 第一节 1.1bogo排序 1.2位运算 1.3打擂台 1.4morris遍历 第二节 2.1睡眠排序 2.2会死的兔子 2.3矩阵快速幂 2.4摔手机/摔鸡蛋 时空复杂度目录 …

超硬核十万字!全网最全 数据结构 代码,随便秒杀老师/面试官,我说的

本文代码实现基本按照《数据结构》课本目录顺序&#xff0c;外加大量的复杂算法实现&#xff0c;一篇文章足够。能换你一个收藏了吧&#xff1f; 当然如果落下什么了欢迎大家评论指出 目录 顺序存储线性表实现 单链表不带头标准c语言实现 单链表不带头压缩c语言实现 约瑟…

Matplotlib——绘制图表

文章目录通过figure()函数创建画布通过subplot()函数创建单个子图通过subplots()函数创建多个子图通过add_subplot()方法添加和选中子图添加各类标签绘制常见图表绘制直方图——hist()函数绘制散点图——scatter()函数绘制柱状图——bar()函数设定线条的相关参数本地保存图片通…

Seaborn——绘制统计图形

文章目录可视化数据的分布绘制单变量分布绘制双变量分布绘制成对的双变量分布用分类数据绘图类别散点图通过stripplot()函数画散点图swarmplot()函数类别内的数据分布绘制箱型图绘制提琴图类别内的统计估计绘制条形图绘制点图可视化数据的分布 绘制单变量分布 一般采用最简单…

Bokeh——交互式可视化库

文章目录前言如何通过Plotting绘制图形前言 Bokeh是一个专门针对Web浏览器使用的交互式可视化库&#xff0c;这是与其他可视化库相比最核心的区别。 如何通过Plotting绘制图形 Plotting是以构建视觉符号为核心的接口&#xff0c;可以结合各种视觉元素&#xff08;例如&#x…

指针、引用以及const限定符、constexpr限定符

文章目录复合类型引用概念与使用引用的定义注意指针概念声明方式取地址符指针值空指针利用指针访问对象赋值和指针void* 指针指向指针的指针指向指针的引用初始化所有指针有多重含义的某些符号const限定符概念const的引用指针和const顶层const和底层constconstexpr和常量表达式…

关键字typedef、关键字using、auto类型说明符和declytpe类型指示符

文章目录类型别名概念关键字 typedef别名声明 (alias declaration) using指针、常量和类型别名类型别名简化多维数组指针auto类型说明符概念复合类型、常量和autodecltype类型指示符概念decltype和引用类型别名 概念 有两种方法可用于定义类型别名。 关键字 typedef typede…

初始化、赋值、默认初始化、列表初始化、类内初始值、直接初始化与拷贝初始化

文章目录初始化和赋值的区别什么是默认初始化&#xff1f;列表初始化列表初始化的使用场景不适合使用列表初始化的场景类内初始值混用string对象和C风格字符串数组与vector对象关于vector对象两者间的初始化关系直接初始化与拷贝初始化初始化和赋值的区别 初始化的含义是创建变…

js动态增加,删除td,tr,table,div

js实现的动态添加&#xff0c;删除table内容&#xff1a; 截图如下&#xff1a; 1. 2. 源代码&#xff1a; main.css body {background-image: url(../images/qiantai/bg.png);font-family: arial;font-size: 12px;color: #d4d7da;text-align: center;background-repeat: r…

jQuery实现复选框的全选和反选:

jQuery实现复选框的全选和反选&#xff1a; 截图如下&#xff1a; 代码如下&#xff1a; index.jsp: <% page language"java" import"java.util.*" pageEncoding"UTF-8"%> <%String path request.getContextPath();String basePath…

C语言隐式/显式类型转换 | C++四种强制类型转换、类的隐式转换、explicit

文章目录C语言类型转换隐式类型转换显式类型转换C 强制类型转换static_castreinterpret_castconst_castdynamic_cast类的隐式类型转换概念只允许一步类类型转换explicit 抑制构造函数定义地隐式转换可以通过显式转换使用explicit构造函数C语言类型转换 隐式类型转换 编译器在…

函数重载、引用再探、内联函数

文章目录函数重载为什么C支持重载&#xff0c;C语言不支持呢&#xff1f;extern “C”引用再探引用的特性引用的使用场景引用和指针引用和指针的不同点:内联函数什么是内联函数&#xff1f;内联函数的特性内联函数的好处类的内联成员函数的声明内联函数的使用constexpr函数概念…

类的概念、成员函数的定义方式、类的访问控制和封装、类的大小、this指针

文章目录类的概念structclassclass和struct的区别是什么呢&#xff1f;类中成员函数的两种定义方式声明和定义都在类中声明和定义分离类的访问控制和封装类的封装特性类的大小结构体内存对齐规则类的存储方式this指针类的概念 在C中&#xff0c;类可以说是最重要的东西&#x…

jQuery实现两个列表框的值之间的互换:

jQuery实现两个列表框的值之间的互换&#xff1a; 截图如下&#xff1a; 代码如下&#xff1a; <% page language"java" import"java.util.*" pageEncoding"UTF-8"%> <%String path request.getContextPath();String basePath reque…

类的6个默认成员函数:构造函数、析构函数、拷贝构造函数、重载运算符、三/五法则

文章目录6个默认成员函数构造函数概念默认构造函数的类型默认实参概念默认实参的使用默认实参声明全局变量作为默认实参某些类不能依赖于编译器合成的默认构造函数第一个原因第二个原因第三个原因构造函数初始化构造函数里面的“”是初始化吗&#xff1f;为什么要使用列表初始化…

C++ 类的知识 | 构造函数再探、匿名对象、友元函数、内部类、类的const成员、类的static成员

文章目录构造函数再探以下代码共调用多少次拷贝构造函数委托构造函数概念形式匿名对象友元友元的声明友元类令成员函数作为友元函数重载和友元注意内部类特性类的const成员可变数据成员类的static成员概念关于static静态成员的类内初始化静态成员能用于某些普通成员不能的场景构…