ElasticSearch 数据聚合、自动补全(自定义分词器)、数据同步

文章目录

  • 数据聚合
    • 一、聚合的种类
    • 二、DSL实现聚合
      • 1、Bucket(桶)聚合
      • 2、Metrics(度量)聚合
    • 三、RestAPI实现聚合
  • 自动补全
    • 一、拼音分词器
    • 二、自定义分词器
    • 三、自动补全查询
    • 四、实现搜索款自动补全(例酒店信息)
  • 数据同步
    • 双写一致性

数据聚合

一、聚合的种类

官方文档 => 聚合 https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
聚合:对文档信息的统计、分类、运算。类似mysql sum、avg、count

  • 桶(Bucket)聚合:用来对文档做分组
    • TermAggregation:按照文档字段值分组(相当于mysql group by)
    • Date Histogram:按照日期阶梯分组,例如一周一组,一月一组
  • 度量(metric)聚合:用来计算一些值,最大值、平均值、最小值等。
    • Avg:平均值
    • Max:最大值
    • Min:最小值
    • Stats:同时求max、min、avg、sum等
  • 管道(pipeline)聚合:以其他聚合结果为基础继续做集合

二、DSL实现聚合

1、Bucket(桶)聚合

在这里插入图片描述

_count:默认是按照文档数量的降序排序

GET /hotel/_search
{"size": 0,"aggs": {"brandAgg": {"terms": {"field": "brand","size": 20,"order": {"_count": "asc"}}}}
}

上面使用的bucket聚合,会扫描索引库所有的文档进行聚合。可以限制扫描的范围:利用query条件即可。

GET /hotel/_search
{"query": {"range": {"price": {"lt": 200 # 只对价位低于200的聚合}}}, "size": 0,"aggs": {"brandAgg": {"terms": {"field": "brand","size": 20,"order": {"_count": "asc"}}}}
}

2、Metrics(度量)聚合

在这里插入图片描述

聚合的嵌套,先对外层进行聚合,在对内存进行聚合
注意嵌套查询:写在外层查询括号内,而非并立。

GET /hotel/_search
{"size": 0,"aggs": {"brandAgg": {"terms": {"field": "brand","size": 10,"order": {"scoreAgg.avg": "asc"}},"aggs": {"scoreAgg": {"stats": {"field": "score"}}}}}
}

三、RestAPI实现聚合

在这里插入图片描述

bucket trem聚合(group by),实现品牌、星级、城市聚合的方法

    public Map<String, List<String>> filters(RequestParam requestParam) {String[] aggNames = new String[]{"brand","city","starName"};Map<String, List<String>> resultMap = new HashMap<>();SearchRequest searchRequest = new SearchRequest("hotel");// 限定聚合范围BoolQueryBuilder boolQueryBuilder = getBoolQueryBuilder(requestParam);searchRequest.source().query(boolQueryBuilder);// 聚合字段searchRequest.source().size(0);searchRequest.source().aggregation(AggregationBuilders.terms(aggNames[0]).field("brand").size(100));searchRequest.source().aggregation(AggregationBuilders.terms(aggNames[1]).field("city").size(100));searchRequest.source().aggregation(AggregationBuilders.terms(aggNames[2]).field("starName").size(100));try {SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);Aggregations aggregations = searchResponse.getAggregations();for (String aggName : aggNames) {Terms terms =  aggregations.get(aggName);List<String> list = new ArrayList<>();for (Terms.Bucket bucket : terms.getBuckets()) {list.add(bucket.getKeyAsString());}resultMap.put(aggName,list);}return resultMap;} catch (IOException e) {e.printStackTrace();return null;}}

自动补全

一、拼音分词器

在这里插入图片描述

下载拼音分词器:https://github.com/medcl/elasticsearch-analysis-pinyin/releases/tag/v8.6.0
解压放在plugins目录下(docker挂载的目录),然后重启es
在这里插入图片描述

二、自定义分词器

在这里插入图片描述
在这里插入图片描述

拼音分词器的过滤规则,参照上面下载的链接。
在这里插入图片描述

创建一个自定义分词器(text index库),分词器名:my_analyzer

// 自定义拼音分词器 + mapping约束
PUT /test
{"settings": {"analysis": {"analyzer": {"my_analyzer": {"tokenizer": "ik_max_word","filter": "py"}},"filter": {"py": {"type": "pinyin","keep_full_pinyin": false,"keep_joined_full_pinyin": true,"keep_original": true,"limit_first_letter_length": 16,"remove_duplicated_term": true,"none_chinese_pinyin_tokenize": false}}}},"mappings": {"properties": {"name": {"type": "text","analyzer": "my_analyzer","search_analyzer": "ik_smart"}}}
}

在这里插入图片描述

三、自动补全查询

completion suggester查询:

  • 字段类型必须是completion
  • 字段值是多词条的数组才有意义

在这里插入图片描述

// 自动补全的索引库
PUT test2
{"mappings": {"properties": {"title":{"type": "completion"}}}
}
// 示例数据
POST test2/_doc
{"title": ["Sony", "WH-1000XM3"]
}
POST test2/_doc
{"title": ["SK-II", "PITERA"]
}
POST test2/_doc
{"title": ["Nintendo", "switch"]
}// 自动补全查询
POST /test2/_search
{"suggest": {"title_suggest": {"text": "s", // 关键字"completion": {"field": "title", // 补全字段"skip_duplicates": true, // 跳过重复的"size": 10 // 获取前10条结果}}}
}

四、实现搜索款自动补全(例酒店信息)

在这里插入图片描述在这里插入代码片

构建索引库

// 酒店数据索引库
PUT /hotel
{"settings": {"analysis": {"analyzer": {"text_anlyzer": {"tokenizer": "ik_max_word","filter": "py"},"completion_analyzer": {"tokenizer": "keyword","filter": "py"}},"filter": {"py": {"type": "pinyin","keep_full_pinyin": false,"keep_joined_full_pinyin": true,"keep_original": true,"limit_first_letter_length": 16,"remove_duplicated_term": true,"none_chinese_pinyin_tokenize": false}}}},"mappings": {"properties": {"id":{"type": "keyword"},"name":{"type": "text","analyzer": "text_anlyzer","search_analyzer": "ik_smart","copy_to": "all"},"address":{"type": "keyword","index": false},"price":{"type": "integer"},"score":{"type": "integer"},"brand":{"type": "keyword","copy_to": "all"},"city":{"type": "keyword"},"starName":{"type": "keyword"},"business":{"type": "keyword","copy_to": "all"},"location":{"type": "geo_point"},"pic":{"type": "keyword","index": false},"all":{"type": "text","analyzer": "text_anlyzer","search_analyzer": "ik_smart"},"suggestion":{"type": "completion","analyzer": "completion_analyzer"}}}
}

查询测试

GET /hotel/_search
{"query": {"match_all": {}}
}GET /hotel/_search
{"suggest": {"YOUR_SUGGESTION": {"text": "s","completion": {"field": "suggestion","skip_duplicates": true // 跳过重复的}}}
}

在这里插入图片描述
在这里插入图片描述

    public List<String> getSuggestion(String prefix) {SearchRequest request = new SearchRequest("hotel");ArrayList<String> list = new ArrayList<>();try {request.source().suggest(new SuggestBuilder().addSuggestion("OneSuggestion",SuggestBuilders.completionSuggestion("suggestion").prefix(prefix).skipDuplicates(true).size(10)));SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);Suggest suggest = response.getSuggest();CompletionSuggestion oneSuggestion = suggest.getSuggestion("OneSuggestion");List<CompletionSuggestion.Entry.Option> options = oneSuggestion.getOptions();for (CompletionSuggestion.Entry.Option option : options) {String text = option.getText().toString();list.add(text);}} catch (IOException e) {e.printStackTrace();}return list;}

数据同步

双写一致性

同步调用数据耦合,业务耦合
在这里插入图片描述

异步通知:增加实现难度
在这里插入图片描述
监听binlog(记录增删改操作):增加mysql压力,中间价搭建
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/44266.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【rust/egui】(三)看看template的app.rs:序列化、持久化存储

说在前面 rust新手&#xff0c;egui没啥找到啥教程&#xff0c;这里自己记录下学习过程环境&#xff1a;windows11 22H2rust版本&#xff1a;rustc 1.71.1egui版本&#xff1a;0.22.0eframe版本&#xff1a;0.22.0上一篇&#xff1a;这里 serde app.rs中首先定义了我们的Templ…

Git判断本地是否最新

场景需求 需要判断是否有新内容更新,确定有更新之后执行pull操作&#xff0c;然后pull成功之后再将新内容进行复制到其他地方 pgit log -1 --prettyformat:"%H" HEAD -- . "origin/HEAD" rgit rev-parse origin/HEAD if [[ $p $r ]];thenecho "Is La…

域名解析和代理

购买域名 这里使用腾讯云进行购买。 对域名进行解析 通过添加记录接口对域名进行解析。 此时我们的服务器地址就被解析到域名上了。 我们可以通过以下格式进行访问&#xff1a; [域名]:[对应的项目端口] 效果为下: 通过nginx进行代理 如果我们使用上述的方式进行访问还是…

【hive】hive分桶表的学习

hive分桶表的学习 前言&#xff1a; 每一个表或者分区&#xff0c;hive都可以进一步组织成桶&#xff0c;桶是更细粒度的数据划分&#xff0c;他本质不会改变表或分区的目录组织方式&#xff0c;他会改变数据在文件中的分布方式。 分桶规则&#xff1a; 对分桶字段值进行哈…

react之react-redux的介绍、基本使用、获取状态、分发动作、数据流、reducer的分离与合并等

react之react-redux的介绍、基本使用、获取状态、分发动作、数据流、reducer的分离与合并等 一、react-redux介绍二、React-Redux-基本使用三、获取状态useSelector四、分发动作useDispatch五、 Redux 数据流六、代码结构七、ActionType的使用八、Reducer的分离与合并九、购物挣…

计算机视觉的应用11-基于pytorch框架的卷积神经网络与注意力机制对街道房屋号码的识别应用

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下计算机视觉的应用11-基于pytorch框架的卷积神经网络与注意力机制对街道房屋号码的识别应用&#xff0c;本文我们借助PyTorch&#xff0c;快速构建和训练卷积神经网络&#xff08;CNN&#xff09;等模型&#xff0c;…

【Redis从头学-5】Redis中的List数据类型实战场景之天猫热销榜单

&#x1f9d1;‍&#x1f4bb;作者名称&#xff1a;DaenCode &#x1f3a4;作者简介&#xff1a;啥技术都喜欢捣鼓捣鼓&#xff0c;喜欢分享技术、经验、生活。 &#x1f60e;人生感悟&#xff1a;尝尽人生百味&#xff0c;方知世间冷暖。 &#x1f4d6;所属专栏&#xff1a;Re…

git错误记录

露id没有影响&#xff0c;搞得微软不知道我ip一样 git fatal: 拒绝合并无关的历史的错误解决(亲测有效)

mybatis缓存

目的&#xff1a;提高查询效率。 映射语句文件中的所有 select 语句的结果将会被缓存。映射语句文件中的所有 insert、update 和 delete 语句会刷新缓存。缓存会使用最近最少使用算法&#xff08;LRU, Least Recently Used&#xff09;算法来清除不需要的缓存。缓存不会定时进行…

Matplotlib绘图知识小结--Python数据分析学习

一、Pyplot子库绘制2D图表 1、Matplotlib Pyplot Pyplot 是 Matplotlib 的子库&#xff0c;提供了和 MATLAB 类似的绘图 API。 Pyplot 是常用的绘图模块&#xff0c;能很方便让用户绘制 2D 图表。 Pyplot 包含一系列绘图函数的相关函数&#xff0c;每个函数会对当前的图像进行…

爬虫框架- feapder + 爬虫管理系统 - feaplat 的学习简记

文章目录 feapder 的使用feaplat 爬虫管理系统部署 feapder 的使用 feapder是一款上手简单&#xff0c;功能强大的Python爬虫框架 feapder 官方文档 文档写的很详细&#xff0c;可以直接上手。 基本命令&#xff1a; 创建爬虫项目 feapder create -p first-project创建爬虫 …

根据源码,模拟实现 RabbitMQ - 实现消息持久化,统一硬盘操作(3)

目录 一、实现消息持久化 1.1、消息的存储设定 1.1.1、存储方式 1.1.2、存储格式约定 1.1.3、queue_data.txt 文件内容 1.1.4、queue_stat.txt 文件内容 1.2、实现 MessageFileManager 类 1.2.1、设计目录结构和文件格式 1.2.2、实现消息的写入 1.2.3、实现消息的删除…

如何将常用的jdbc方法封装起来???

你是否还在为每次新建项目连接数据库而烦恼&#xff1f;&#xff1f;&#xff1f;&#xff08;教你一次代码&#xff0c;简单完成每次连接&#xff09; 1.建立maven项目 还没下载安装或者不会建立maven项目的可以看这里哦&#xff1a;maven的下载安装与配置环境变量&#xff0…

javascript期末作业【三维房屋设计】 【源码+文档下载】

1、引入three.js库 官网下载three.js 库 放置目录并引用 引入js文件: 设置场景&#xff08;scene&#xff09; &#xff08;1&#xff09;创建场景对象 &#xff08;2&#xff09;设置透明相机 1,透明相机的优点 透明相机机制更符合于人的视角,在场景预览和游戏场景多有使用…

VALN-hybrid模式

实验拓扑及要求 一、实验思路 1.R1-R3按要求配置&#xff0c;R2不划分vlan使其全部都可以访问 2.交换机和路由器的交换机直连接口设为hybrid模式且R4-R6不带vlan标签访问路由器 3.交换机和交换机的两个直连接口设为hybrid模式且只允许R4-R6所在vlan标签通过 4.R4-R6只允许其…

怎么对视频进行压缩?

怎么对视频进行压缩&#xff1f;视频压缩&#xff0c;我们都知道是将视频文件进行压缩变小的过程&#xff0c;是我们日常办公中较为常用的手段。现如今&#xff0c;在视频技术不断发展与创新的基础上&#xff0c;视频分辨率也在不断提高&#xff0c;进而导致文件占有量也非常大…

2023河南萌新联赛第(五)场:郑州轻工业大学

A.买爱心气球 原题链接 : 登录—专业IT笔试面试备考平台_牛客网 博弈论 : #include <iostream> using namespace std; int t,n,m; string s1 "Alice",s2 "Bob"; int main() {cin>>t;while(t--){cin>>n>>m;if (n % 3 0) {cou…

【HarmonyOS】codelab在hvigor版本2.4.2上无法运行问题

【关键字】 HarmonyOS、codelab、hvigor 【问题描述】 有cp反馈集成鸿蒙codelab报错。 下载音乐专辑示例文件&#xff08;一次开发&#xff0c;多端部署-音乐专辑&#xff08;ArkTS&#xff09; (huawei.com)&#xff09;后构建项目&#xff0c;显示找不到2.5.0的hvigor。 …

数学建模之“层次分析法”原理和代码详解

一、层次分析法简介 层次分析法&#xff08;Analytic Hierarchy Process&#xff0c;AHP&#xff09;是一种用于多准则决策分析和评估问题的定量方法&#xff0c;常用于数学建模中。它是由数学家托马斯赛蒂&#xff08;Thomas Saaty&#xff09;开发的。 层次分析法将复杂的决…

读发布!设计与部署稳定的分布式系统(第2版)笔记33_混沌工程

1. 康威定律 1.1. 梅尔文康威 1.1.1. Melvin Conway 1.1.2. 1968年 1.1.3. 在设计系统时&#xff0c;组织受制于其自身的沟通结构&#xff0c;这使得它设计的系统结构与沟通结构相一致。 1.1.3.1. 社会学现象 1.2. 要在系统内部或系统之间构建接口&#xff0c;两个人必须…