如果b与c互素,则(a/b)%c=a*b^((c)-1)%c其中是欧拉函数。或者(a/b)%c=a*b^(c-2)%c
如果b与c不互素,则(a/b)%c=(a%bc)/b
对于b与c互素和不互素都有(a/b)%c=(a%bc)/b成立
乘法逆元用扩展欧几里得定理:
例题:ZOJ - 3609
题干:
The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m)
. This is equivalent to ax≡1 (mod m)
.
Input
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
Output
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
Sample Input
3
3 11
4 12
5 13
Sample Output
4
Not Exist
8
题目大意:如果存在逆元输出逆元,不存在逆元输出Not Exist。
AC代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;int e_gcd(int a,int b,int &x,int &y) {if(b == 0) {x=1;y=0;return a;}int q=e_gcd(b,a%b,y,x);y-=a/b*x;return q;
}
int main()
{long long t;int x,y,a,b;while(~scanf("%lld",&t) ) {while(t--) {scanf("%d%d",&a,&b);int gcd = e_gcd(a,b,x,y);if(gcd !=1) {puts("Not Exist");continue; }if(x<=0) x+=b;printf("%d\n",x); }}return 0 ;
}
注意一下是x<=0的时候都不算逆元!!需要x+=b来变成正数!不能是非负数!。