这次主要是爬了京东上一双鞋的相关评论:将数据保存到excel中并可视化展示相应的信息
主要的python代码如下:
文件1
#将excel中的数据进行读取分析
import openpyxl
import matplotlib.pyplot as pit #数据统计用的
wk=openpyxl.load_workbook('销售数据.xlsx')
sheet=wk.active #获取活动表
#获取最大行数和最大列数
rows=sheet.max_row
cols=sheet.max_column
lst=[] #用于存储鞋子码数
for i in range (2,rows+1):
size=sheet.cell(i,3).value
lst.append(size)
#以上已经将excel中的数据读取完毕
#一下操作就你行统计不同码数的数量
'''python中有一个数据结构叫做字典,使用鞋码做key,使用销售数量做value'''
dic_size={}
for item in lst:
dic_size[item]=0
for item in lst:
for size in dic_size:
#遍历字典
if item==size:
dic_size[size]+=1
break
for item in dic_size:
print(item,dic_size[item])
#弄成百分比的形式
lst_total=[]
for item in dic_size:
lst_total.append([item,dic_size[item],dic_size[item]/160*1.0])
#接下来进行数据的可视化(进行画饼操作)
labels=[item[0] +'码'for item in lst_total] #使用列表生成式,得到饼图的标签
fraces=[item[2] for item in lst_total] #饼图中的数据源
pit.rcparams['font.family']=['simhei'] #单独的表格乱码的处理方式
pit.pie(x=fraces,labels=labels,autopct='%1.1f%%')
#pit.show()进行结果的图片的展示
pit.savefig('图.jpg')
文件2
#所涉及到的是requests和openpyxl数据的存储和数据的清洗以及统计然后就是matplotlib进行数据的可视化
#静态数据点击element中点击发现在html中,服务器已经渲染好的内容,直接发给浏览器,浏览器解释执行,
#动态数据:如果点击下一页。我们的地址栏(加后缀但是前面的地址栏没变也算)(也可以点击2和3页)没有发生任何变化说明是动态数据,说明我们的数据是后来被渲染到html中的。他的数据根本不在html中的。
#动态查看network然后用的url是network里面的headers
#安装第三方模块输入cmd之后pip install 加名字例如requests
import requests
import re
import time
import json
import openpyxl #用于操作 excel文件的
headers = {'user-agent':'mozilla/5.0 (windows nt 10.0; win64; x64) applewebkit/537.36 (khtml, like gecko) chrome/74.0.3729.131 safari/537.36'}#创建头部信息
def get_comments(productid,page):
url = "https://club.jd.com/comment/productpagecomments.action?callback=fetchjson_comment98&productid={0}&score=0&sorttype=5&page={1}&pagesize=10&isshadowsku=0&fold=1".format(productid,page)
resp = requests.get(url, headers=headers)
s=resp.text.replace('fetchjson_comment98(','')#进行替换操作。获取到所需要的相应的json,也就是去掉前后没用的东西
s=s.replace(');','')
json_data=json.loads(s)#进行数据json转换
return json_data
#获取最大页数
def get_max_page(productid):
dis_data=get_comments(productid,0)#调用刚才写的函数进行向服务器的访问请求,获取字典数据
return dis_data['maxpage']#获取他的最大页数。每一页都有最大页数
#进行数据提取
def get_info(productid):
max_page=get_max_page(productid)
lst=[]#用于存储提取到的商品数据
for page in range(1,max_page+1):
#获取没页的商品评论
comments=get_comments(productid,page)
comm_list=comments['comments']#根据comnents获取到评论的列表(每页有10条评论)
#遍历评论列表,获取其中的相应的数据
for item in comm_list:
#每条评论分别是一字典。在继续通过key来获取值
content=item['content']
color=item['productcolor']
size=item['productsize']
lst.append([content,color,size])#将每条评论添加到列表当中
time.sleep(3)#防止被京东封ip进行一个时间延迟。防止访问次数太频繁
save(lst)
def save(lst):
#把爬取到的数据进行存储,保存到excel中
wk=openpyxl.workbook()#用于创建工作簿对象
sheet=wk.active #获取活动表(一个工作簿有三个表)
#遍历列表将数据添加到excel中。列表中的一条数据在表中是一行
biaotou='评论','颜色','大小'
sheet.append(biaotou)
for item in lst:
sheet.append(item)
#将excel保存到磁盘上
wk.save('销售数据.xlsx')
if __name__=='__main__':
productid='66749071789'
get_info(productid)
print("ok")
实现的效果如下:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持萬仟网。
希望与广大网友互动??
点此进行留言吧!