Lnton羚通关于【PyTorch】教程:torchvision 目标检测微调

torchvision 目标检测微调
本教程将使用Penn-Fudan Database for Pedestrian Detection and Segmentation 微调 预训练的Mask R-CNN 模型。 它包含 170 张图片,345 个行人实例。

定义数据集
用于训练目标检测、实例分割和人物关键点检测的参考脚本允许轻松支持添加新的自定义数据集。数据集应继承自标准的 torch.utils.data.dataset 类,并实现 __len__ 和 __getitem__ 。

__getitem__ 需要返回:

image: PIL 图像 (H, W)
target: 字典数据,需要包含字段
boxes (FloatTensor[N, 4]): N 个 Bounding box 的位置坐标 [x0, y0, x1, y1], 0~W, 0~H
labels (Int64Tensor[N]): 每个 Bounding box 的类别标签,0 代表背景类。
image_id (Int64Tensor[1]): 图像的标签 id,在数据集中是唯一的。
area (Tensor[N]): Bounding box 的面积,在 COCO 度量里使用,可以分别对不同大小的目标进行度量。
iscrowd (UInt8Tensor[N]): 如果 iscrowd=True 在评估时忽略。
(optionally) masks (UInt8Tensor[N, H, W]): 可选的 分割掩码
(optionally) keypoints (FloatTensor[N, K, 3]): 对于 N 个目标来说,包含 K 个关键点 [x, y, visibility], visibility=0 表示关键点不可见。
如果模型可以返回上述方法,可以在训练、评估都能使用,可以用 pycocotools 里的脚本进行评估。

pip install pycocotools 安装工具。

关于 labels 有个说明,模型默认 0 为背景。如果数据集没有背景类别,不需要在标签里添加 0 。 例如,假设有 cat 和 dog 两类,定义了 1 表示 cat , 2 表示 dog , 如果一个图像有两个类别,类别的 tensor 为 [1, 2] 。

此外,如果希望在训练时使用纵横比分组,那么建议实现 get_height_and_width 方法,该方法将返回图像的高度和宽度,如果未提供此方法,我们将通过 __getitem__ 查询数据集的所有元素,这会将图像加载到内存中,并且比提供自定义方法的速度慢。

为 PennFudan 写自定义数据集
文件夹结构如下:

PennFudanPed/PedMasks/FudanPed00001_mask.pngFudanPed00002_mask.pngFudanPed00003_mask.pngFudanPed00004_mask.png...PNGImages/FudanPed00001.pngFudanPed00002.pngFudanPed00003.pngFudanPed00004.png

这是图像的标注信息,包含了 mask 以及 bounding box 。每个图像都有对应的分割掩码,每个颜色代表不同的实例。

import os 
import numpy as np 
import torch 
from PIL import Imageclass PennFudanDataset(torch.utils.data.Dataset):def __init__(self, root, transforms):self.root = rootself.transforms = transforms## 加载所有图像,sort 保证他们能够对应起来self.images = list(sorted(os.listdir(os.path.join(self.root, 'PNGImages'))))self.masks = list(sorted(os.listdir(os.path.join(self.root, 'PedMasks'))))def __getitem__(self, idx):img_path = os.path.join(self.root, 'PNGImages', self.images[idx])mask_path = os.path.join(self.root, 'PedMasks', self.masks[idx])image = Image.open(img_path).convert('RGB')## mask 图像并没有转换为 RGB,里面存储的是标签,0表示的是背景mask = Image.open(mask_path)# 转换为 numpymask = np.array(mask) # 实例解码成不同的颜色obj_ids = np.unique(mask)# 移除背景obj_ids = obj_ids[1:]masks = mask == obj_ids[:, None, None]# get bounding box coordinates for each masknum_objs = len(obj_ids)boxes = []for i in range(num_objs):pos = np.where(masks[i])xmin = np.min(pos[1])xmax = np.max(pos[1])ymin = np.min(pos[0])ymax = np.max(pos[0])boxes.append([xmin, ymin, xmax, ymax])# 转换为 tensorboxes = torch.as_tensor(boxes, dtype=torch.float32)labels = torch.ones((num_objs,), dtype=torch.int64)masks = torch.as_tensor(masks, dtype=torch.uint8)image_id = torch.tensor([idx])area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])iscrowd = torch.zeros((num_objs,), dtype=torch.int64)target = {}target["boxes"] = boxestarget["labels"] = labelstarget["masks"] = maskstarget["image_id"] = image_idtarget["area"] = areatarget["iscrowd"] = iscrowdif self.transforms is not None:image, target = self.transforms(image, target)return image, targetdef __len__(self):return len(self.images)

Lnton羚通专注于音视频算法、算力、云平台的高科技人工智能企业。 公司基于视频分析技术、视频智能传输技术、远程监测技术以及智能语音融合技术等, 拥有多款可支持ONVIF、RTSP、GB/T28181等多协议、多路数的音视频智能分析服务器/云平台。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43615.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

暴力模拟入门+简单:零件组装、塔子的签到题、塔子哥考试、平均像素值、换座位

暴力模拟入门 P1038 小红书-2022.9.23-零件组装 #include <bits/stdc.h> #include <cstdint> using namespace std;typedef long long LL; const int N 100001; int num[4]; LL d; vector<vector<LL>> v(4, vector<LL>(N));int main() {for(in…

解决Pycharm的Settings中Project不见了也无法选择Python Interpreter的方法

目录 一、问题如下二、解决方法 一、问题如下 突然打开项目没有python解释器&#xff0c;也无法重新配置python Interpreter&#xff0c;而且整个文件夹是黄色高亮的形式&#xff0c;如下显示&#xff0c;而且重新安装了pycharm也没用甚至说打开File–>Setting–>Projec…

日常BUG——普通页面跳转tabbar页面报错

&#x1f61c;作 者&#xff1a;是江迪呀✒️本文关键词&#xff1a;日常BUG、BUG、问题分析☀️每日 一言 &#xff1a;存在错误说明你在进步&#xff01; 一、问题描述 微信小程序页面跳转的时候出现下面的问题&#xff1a; wx.redirectTo({url: /pages/index/i…

Linux学习之基本指令二

-----紧接上文 在了解cat指令之前&#xff0c;我们首先要了解到Linux下一切皆文件&#xff0c;在学习c语言时我们就已经了解到了 对文件输入以及读入的操作&#xff08;向显示器打印&#xff0c;从键盘读取数据&#xff09;&#xff0c;对于Linux下文件的操作&#xff0c;也是…

算法与数据结构(二十三)动态规划设计:最长递增子序列

注&#xff1a;此文只在个人总结 labuladong 动态规划框架&#xff0c;仅限于学习交流&#xff0c;版权归原作者所有&#xff1b; 也许有读者看了前文 动态规划详解&#xff0c;学会了动态规划的套路&#xff1a;找到了问题的「状态」&#xff0c;明确了 dp 数组/函数的含义&a…

js简介以及在html中的2种使用方式(hello world)

简介 javascript &#xff1a;是一个跨平台的脚本语言&#xff1b;是一种轻量级的编程语言。 JavaScript 是 Web 的编程语言。所有现代的 HTML 页面都使用 JavaScript。 HTML&#xff1a; 结构 css&#xff1a; 表现 JS&#xff1a; 行为 HTMLCSS 只能称之为静态网页&#xff0…

github以及上传代码处理

最近在github上传代码的时候出现了&#xff1a; /video_parser# git push -u origin main Username for https://github.com: gtnyxxx Password for https://gtny2010github.com: remote: Support for password authentication was removed on August 13, 2021. remote: Plea…

ROS局部路径规划器插件teb_local_planner流程梳理(上)

在我之前的文章《ROS导航包Navigation中的 Movebase节点路径规划相关流程梳理》中已经介绍过Move_base节点调用局部路径规划器插件的接口函数是computeVelocityCommands&#xff0c;接下来&#xff0c;我们就从这个函数入手梳理一下teb_local_planner功能包的工作流程。 ☆注&a…

推荐一个绘图平台(可替代Visio)

不废话&#xff0c;简易记网址&#xff1a; draw.io 网站会重定向到&#xff1a;https://app.diagrams.net/

Databend 开源周报第 106 期

Databend 是一款现代云数仓。专为弹性和高效设计&#xff0c;为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务&#xff1a;https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展&#xff0c;遇到更贴近你心意的 Databend 。 数据脱敏 Data…

云原生 AI 工程化实践之 FasterTransformer 加速 LLM 推理

作者&#xff1a;颜廷帅&#xff08;瀚廷&#xff09; 01 背景 OpenAI 在 3 月 15 日发布了备受瞩目的 GPT4&#xff0c;它在司法考试和程序编程领域的惊人表现让大家对大语言模型的热情达到了顶点。人们纷纷议论我们是否已经跨入通用人工智能的时代。与此同时&#xff0c;基…

CCF C³ 走进百度:大模型与可持续生态发展

2023年8月10日&#xff0c;由CCF CTO Club发起的第22期C活动在百度北京总部进行&#xff0c;以“AI大语言模型技术与生态发展”主题&#xff0c;50余位企业界、学界专家、研究人员就此进行深入探讨。 CCF C走进百度 本次活动&#xff0c;CCF秘书长唐卫清与百度集团副总裁、深…

如何保证数据传输的安全?

要确保数据传输的安全&#xff0c;您可以采取以下措施&#xff1a; 使用加密协议&#xff1a;使用安全的传输协议&#xff0c;如HTTPS(HTTP over SSL/TLS)或其他安全协议&#xff0c;以保护数据在传输过程中的安全性。加密协议可以有效防止数据被窃听或篡改。 强化身份验证&…

3种获取OpenStreetMap数据的方法【OSM】

OpenStreetMap 是每个人都可以编辑的世界地图。 这意味着你可以纠正错误、添加新地点&#xff0c;甚至自己为地图做出贡献&#xff01; 这是一个社区驱动的项目&#xff0c;拥有数百万注册用户。 这是一个社区驱动的项目&#xff0c;旨在在开放许可下向每个人提供所有地理数据。…

【云计算原理及实战】初识云计算

该学习笔记取自《云计算原理及实战》一书&#xff0c;关于具体描述可以查阅原本书籍。 云计算被视为“革命性的计算模型”&#xff0c;因为它通过互联网自由流通使超级计算能力成为可能。 2006年8月&#xff0c;在圣何塞举办的SES&#xff08;捜索引擎战略&#xff09;大会上&a…

Sentinel 规则持久化

文章目录 Sentinel 规则持久化一、修改order-service服务1.引入依赖2.配置nacos地址 第二步修改非常麻烦&#xff0c;可以略过&#xff0c;直接使用已经打好包的来使用二、修改sentinel-dashboard源码1. 解压2. 修改nacos依赖3. 添加nacos支持4. 修改nacos地址5. 配置nacos数据…

HCIP第五节------------------------------------------ospf

一、OSPF基础 1、动态路由分类 2、距离矢量协议 运行距离矢量路由协议的路由器周期性地泛洪自己的路由表。通过路由的交互&#xff0c;每台路由器都从相邻的路由器学习到路由&#xff0c;并且加载进自己的路由表中&#xff0c;然后再通告给其他相邻路由器。 对于网络中的所有…

AR/VR眼镜转接器方案,实现同时传输视频快充方案

简介 虚拟现实头戴显示器设备&#xff0c;简称VR头显VR眼镜&#xff0c;是利用仿真技术与计算机图形学人机接口技术多媒体技术传感技术网络技术等多种技术集合的产品&#xff0c;是借助计算机及最新传感器技术创造的一种崭新的人机交互手段。VR头显VR眼镜是一个跨时代的产品。不…

AgentBench——AI智能体基准测试和排行榜

如果您有兴趣了解有关如何对AI大型语言模型或LLM进行基准测试的更多信息,那么一种新的基准测试工具Agent Bench已成为游戏规则的改变者。这个创新工具经过精心设计,将大型语言模型列为代理,对其性能进行全面评估。该工具的首次亮相已经在AI社区掀起了波澜,揭示了ChatGPT-4目…

Selenium 测试用例编写

编写Selenium测试用例就是模拟用户在浏览器上的一系列操作&#xff0c;通过脚本来完成自动化测试。 编写测试用例的优势&#xff1a; 开源&#xff0c;免费。 支持多种浏览器 IE&#xff0c;Firefox&#xff0c;Chrome&#xff0c;Safari。 支持多平台 Windows&#xff0c;Li…