ARM汇编有ldr指令以及ldr、adr伪指令,他门都可以将标号表达式作为操作数,下面通过分析一段代码以及对应的反汇编结果来说明它们的区别。
ldr r0, _start
adr r0, _start
ldr r0, =_start
_start:
b _start
编译的时候设置 RO 为 0x30000000(好像有问题),下面是反汇编的结果:
0x00000000: e59f0004 ldr r0, [pc, #4] ; 0xc
0x00000004: e28f0000 add r0, pc, #0 ; 0x0
0x00000008: e59f0000 ldr r0, [pc, #0] ; 0x10
0x0000000c: eafffffe b 0xc
0x00000010: 3000000c andcc r0, r0, ip ;注这条指令是不在上面指令中的任何一条
1.ldr r0, _start :读取指定地址中的值
ldr在此是一条指令,把内存地址 _start 位置中的值读入r0。(_start为指针之意,读取指针的值)
在这里_start是一个标号(是一个相对程序的表达式),汇编程序计算相对于 PC 的偏移量,并生成相对于 PC的前索引指令:ldr r0, [pc, #4]。执行指令后,r0 = 0xeafffffe。
可以在和_start标号的相对位置不变的情况下移动( 也就是说整段代码从flash中拷贝到ram中依然可以正常运行)。
2.adr r0, _start :将指定地址赋到r0中
ADR是小范围的地址读取伪指令.ADR 指令将基于PC 相对偏移的地址值读取到寄存器中.在汇编编译源程序时,ADR 伪指令被编译器替换成一条合适的指令.通常,编译器用一条
ADD 指令或SUB 指令来实现该ADR 伪指令的功能,若不能用一条指令实现,则产生错误,
编译失败.
r0的值为((标号_start 的地址与此指令的距离差)+(此指令的地址))。在此例中被汇编成:add r0, pc, #0。该代码可以在和标号相对位置不变的情况下移动(也就是说整段代码从flash中拷贝到ram中依然可以正常运行);
假如这段代码在 0x30000000 运行,那么 adr r0, _start 得到 r0 = 0x3000000c;如果在地址 0 运行,就是 0x0000000c 了。
通过这一点可以判断程序在什么地方运行。U-boot中那段relocate代码就是通过adr实现判断当前程序是在RAM中还是flash中。
3.ldr r0, =_start :将指定标号的值赋给r0
ldr在此是一条伪指令,_start(即:label-expr)是一个相对程序的或外部的表达式。汇编程序将相对程序的标号表达式 label-expr 的值放在一个文字池中,并生成一个相对程序的 LDR 指令来从文字池中装载该值,在此例中生成的指令为:ldr r0, [pc, #0],对应文字池中的地址以及值为:0x00000010: 3000000c。如果 label-expr 是一个外部表达式,或者未包含于当前段内,则汇编程序在目标文件中放置一个链接程序重定位命令。链接程序在链接时生成地址。
因此取得的是标号 _start 的绝对地址,这个绝对地址(运行地址)是在连接的时候确定的。它要占用 2 个 32bit 的空间,一条是指令,另一条是文字池中存放_start 的绝对地址。因此可以看出,不管这段代码将来在什么地方运行,它的结果都是 r0 = 0x3000000c。由于ldr r0, =_start取得的是_start的绝对地址,这句代码可以在_start标号的绝对位置不变的情况下移动;如果使用寄存器pc在程序中可以实现绝对转移。(1.绝对地址;2.标号对应的值)
举例:
GPFCON EQU 0x56000050
ldr r0,=GPFCON
GPFCON :标号
0x56000050 :标号的值