Flask-SQLAlchemy

认识Flask-SQLAlchemy

  1. Flask-SQLAlchemy 是一个为 Flask 应用增加 SQLAlchemy 支持的扩展。它致力于简化在 Flask 中 SQLAlchemy 的使用。
  2. SQLAlchemy 是目前python中最强大的 ORM框架, 功能全面, 使用简单。

ORM优缺点
优点

  1. 有语法提示, 省去自己拼写SQL,保证SQL语法的正确性
  2. orm提供方言功能(dialect, 可以转换为多种数据库的语法), 减少学习成本
  3. 防止sql注入攻击
  4. 搭配数据迁移, 更新数据库方便
  5. 面向对象, 可读性强, 开发效率高

缺点

  1. 需要语法转换, 效率比原生sql低
  2. 复杂的查询往往语法比较复杂 (可以使用原生sql替换)

环境安装

pip install flask-sqlalchemy

flask-sqlalchemy 在安装/使用过程中, 如果出现 ModuleNotFoundError: No module named 'MySQLdb’错误, 则表示缺少mysql依赖包, 可依次尝试下列两个方案后重试:
方案1: 安装 mysqlclient依赖包 (如果失败再尝试方案2)

pip install mysqlclient

方案2: 安装pymysql依赖包

pip install pymysql

mysqlclient 和 pymysql 都是用于mysql访问的依赖包, 前者由C语言实现的, 而后者由python实现, 前者的执行效率比后者更高, 但前者在windows系统中兼容性较差, 工作中建议优先前者。

组件初始化
基本配置

flask-sqlalchemy 的相关配置也封装到了 flask 的配置项中, 可以通过app.config属性 或 配置加载方案 (如config.from_object) 进行设置


数据库URI(连接地址)格式: 协议名://用户名:密码@数据库IP:端口号/数据库名, 如:
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://root:mysql@127.0.0.1:3306/test31'

注意点如果数据库驱动使用的是 pymysql, 则协议名需要修改为
mysql+pymysql://xxxxxxx
 

from flask import Flask
from flask_sqlalchemy import SQLAlchemyapp = Flask(__name__)# 设置数据库连接地址
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://root:mysql@127.0.0.1:3306/test31'
# 是否追踪数据库修改(开启后会触发一些钩子函数)  一般不开启, 会影响性能
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
# 是否显示底层执行的SQL语句
app.config['SQLALCHEMY_ECHO'] = True


两种初始化方式
.方式1
flask-sqlalchemy 支持两种组件初始化方式:

from flask import Flask
from flask_sqlalchemy import SQLAlchemyapp = Flask(__name__)# 应用配置
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://root:mysql@127.0.0.1:3306/test31'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
app.config['SQLALCHEMY_ECHO'] = True# 方式1: 初始化组件对象, 直接关联Flask应用
db = SQLAlchemy(app)


方式2: 先创建组件, 延后关联Flass应用

from flask import Flask
from flask_sqlalchemy import SQLAlchemy# 方式2: 初始化组件对象, 延后关联Flask应用
db = SQLAlchemy()def create_app(config_type):"""工厂函数"""# 创建应用flask_app = Flask(__name__)# 加载配置config_class = config_dict[config_type]flask_app.config.from_object(config_class)# 关联flask应用db.init_app(app)return flask_app


构建模型类

flask-sqlalchemy 的关系映射和 Django-orm 类似

类 对应 表
类属性 对应 字段
实例对象 对应 记录

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
import os
import pymysql as MySQLdbbasedir = os.path.abspath(os.path.dirname(__file__))
app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql+pymysql://root:yu201541010@127.0.0.1:3306/pythontest'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
app.config['SQLALCHEMY_ECHO'] = True# 创建组件对象
db = SQLAlchemy(app)# 构建模型类  类->表  类属性->字段  实例对象->记录
class User(db.Model):__tablename__ = 't_user'  # 设置表名, 表名默认为类名小写id = db.Column(db.Integer, primary_key=True)  # 设置主键, 默认自增name = db.Column('username', db.String(20), unique=True)  # 设置字段名 和 唯一约束age = db.Column(db.Integer, default=10, index=True)  # 设置默认值约束 和 索引with app.app_context():db.create_all()if __name__ == '__main__':app.run(debug=True)


注意点

  1. 模型类必须继承 db.Model, 其中 db 指对应的组件对象
  2. 表名默认为类名小写, 可以通过 __tablename__类属性 进行修改
  3. 类属性对应字段, 必须是通过 db.Column() 创建的对象
  4. 可以通过 create_all() 和 drop_all()方法 来创建和删除所有模型类对应的表常用的字段类型

常用的字段选项


注意点: 如果没有给对应字段的类属性设置default参数, 且添加数据时也没有给该字段赋值, 则sqlalchemy会给该字段设置默认值 None

 

数据操作
增加数据

@app.route('/')
def index():# 增加数据user1 = User(name = 'zs', age = 20)#将模型对象添加到会话中db.session.add(user1)db.session.commit()return "index"


注意点:

这里的 会话 并不是 状态保持机制中的 session,而是 sqlalchemy 的会话。它被设计为 数据操作的执行者, 从SQL角度则可以理解为是一个 加强版的数据库事务
sqlalchemy 会 自动创建事务, 并将数据操作包含在事务中, 提交会话时就会提交事务
事务提交失败会自动回滚
查询数据

class Users(db.Model):__tablename__ = 'users'id = db.Column(db.Integer, primary_key=True)name = db.Column(db.String(64))email = db.Column(db.String(64))age = db.Column(db.Integer)def __repr__(self):return "(%s, %s, %s, %s)" % (self.id, self.name, self.email, self.age)
@app.route('/createusers')
def createusers():user1 = Users(name='wang', email='wang@163.com', age=20)user2 = Users(name='zhang', email='zhang@189.com', age=33)user3 = Users(name='chen', email='chen@126.com', age=23)user4 = Users(name='zhou', email='zhou@163.com', age=29)user5 = Users(name='tang', email='tang@itheima.com', age=25)user6 = Users(name='wu', email='wu@gmail.com', age=25)user7 = Users(name='qian', email='qian@gmail.com', age=23)user8 = Users(name='liu', email='liu@itheima.com', age=30)user9 = Users(name='li', email='li@163.com', age=28)user10 = Users(name='sun', email='sun@163.com', age=26)db.session.add_all([user1, user2, user3, user5, user4, user6, user7, user8,user9,user10])db.session.commit()return "success"
@app.route('/query')
def query():user = Users.query.first()return user.name+" "+user.email


# 查询所有用户数据
User.query.all() 返回列表, 元素为模型对象

# 查询有多少个用户
User.query.count()

# 查询第1个用户
User.query.first()  返回模型对象/None

# 查询id为4的用户[3种方式]
# 方式1: 根据id查询  返回模型对象/None
User.query.get(4)  

# 方式2: 等值过滤器 关键字实参设置字段值  返回BaseQuery对象
# BaseQuery对象可以续接其他过滤器/执行器  如 all/count/first等
User.query.filter_by(id=4).all()  

# 方式3: 复杂过滤器  参数为比较运算/函数引用等  返回BaseQuery对象
User.query.filter(User.id == 4).first()  

# 查询名字结尾字符为g的所有用户[开始 / 包含]
User.query.filter(User.name.endswith("g")).all()
User.query.filter(User.name.startswith("w")).all()
User.query.filter(User.name.contains("n")).all()
User.query.filter(User.name.like("w%n%g")).all()  # 模糊查询

# 查询名字和邮箱都以li开头的所有用户[2种方式]
User.query.filter(User.name.startswith('li'), User.email.startswith('li')).all()
from sqlalchemy import and_
User.query.filter(and_(User.name.startswith('li'), User.email.startswith('li'))).all()

# 查询age是25 或者 `email`以`itheima.com`结尾的所有用户
from sqlalchemy import or_
User.query.filter(or_(User.age==25, User.email.endswith("itheima.com"))).all()

# 查询名字不等于wang的所有用户[2种方式]
from sqlalchemy import not_
User.query.filter(not_(User.name == 'wang')).all()
User.query.filter(User.name != 'wang').all()

# 查询id为[1, 3, 5, 7, 9]的用户
User.query.filter(User.id.in_([1, 3, 5, 7, 9])).all()

# 所有用户先按年龄从小到大, 再按id从大到小排序, 取前5个
User.query.order_by(User.age, User.id.desc()).limit(5).all()

# 查询年龄从小到大第2-5位的数据   2 3 4 5
User.query.order_by(User.age).offset(1).limit(4).all()

# 分页查询, 每页3个, 查询第2页的数据  paginate(页码, 每页条数)
pn = User.query.paginate(2, 3)
pn.pages 总页数  pn.page 当前页码 pn.items 当前页的数据  pn.total 总条数

# 查询每个年龄的人数    select age, count(name) from t_user group by age  分组聚合
from sqlalchemy import func
data = db.session.query(User.age, func.count(User.id).label("count")).group_by(User.age).all()
for item in data:
    # print(item[0], item[1])
    print(item.age, item.count)  # 建议通过label()方法给字段起别名, 以属性方式获取数据


# 只查询所有人的姓名和邮箱  优化查询   User.query.all()  # 相当于select *
from sqlalchemy.orm import load_only
data = User.query.options(load_only(User.name, User.email)).all()  # flask-sqlalchem的语法
for item in data:
    print(item.name, item.email)

data = db.session.query(User.name, User.email).all()  # sqlalchemy本体的语法
for item in data:
    print(item.name, item.email)

更新数据
flask-sqlalchemy 提供了两种更新数据的方案 

先查询, 再更新
对应SQL中的 先select, 再update
基于过滤条件的更新 (推荐方案)
对应SQL中的 update xx where xx = xx (也称为 update子查询 )
先查询, 再更新
这种方式的缺点

查询和更新分两条语句, 效率低
如果并发更新, 可能出现更新丢失问题(Lost Update)

class Goods(db.Model):__tablename__ = 't_good'id = db.Column(db.Integer, primary_key = True)name = db.Column(db.String(20), unique=True)count = db.Column(db.Integer)
@app.route('/addgood')
def addgood():goods = Goods(name='方便面', count=10)db.session.add(goods)db.session.commit()return "success"
@app.route('/updategood')
def updategood():goods = Goods.query.filter(Goods.name=='方便面').first()goods.count = goods.count - 1db.session.commit()return "success"


基于过滤条件的更新
这种方式的优点:

一条语句, 被网络IO影响程度低, 执行效率更高
查询和更新在一条语句中完成, 单条SQL具有原子性, 不会出现更新丢失问题
会对满足过滤条件的所有记录进行更新, 可以实现批量更新处理
操作步骤如下:

配合 查询过滤器filter() 和 更新执行器update() 进行数据更新
提交会话

@app.route('/updategood2')
def updategood2():Goods.query.filter(Goods.name=='方便面').update({'count':Goods.count-1})db.session.commit()return "success"


删除数据
类似更新数据, 也存在两种删除数据的方案
先查询, 再删除

对应SQL中的 先select, 再delete
基于过滤条件的删除 (推荐方案)

对应SQL中的 delete xx where xx = xx (也称为 delete子查询 )
这种方式的缺点:

查询和删除分两条语句, 效率低

@app.route('/deletegood')
def deletegood():goods = Goods.query.filter(Goods.name=='方便面').first()db.session.delete(goods)db.session.commit()return "success"


基于过滤条件的删除
这种方式的优点:

一条语句, 被网络IO影响程度低, 执行效率更高
会对满足过滤条件的所有记录进行删除, 可以实现批量删除处理
操作步骤如下:

配合 查询过滤器filter() 和 删除执行器delete() 进行数据删除
提交会话

@app.route('/deletegood2')
def deletegood2():Goods.query.filter(Goods.name=='方便面').delete()db.session.commit()return "success"


增删改操作都需要提交会话, 对应事务中进行数据库变化后提交事务
刷新数据
Session 被设计为数据操作的执行者, 会先将操作产生的数据保存到内存中
在执行 flush刷新操作 后, 数据操作才会同步到数据库中
有两种情况下会 隐式执行刷新操作
提交会话
执行查询操作 (包括 update 和 delete 子查询)
开发者也可以 手动执行刷新操作 session.flush()
from flask import Flask
from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)

# 相关配置
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://root:mysql@127.0.0.1:3306/test31'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
app.config['SQLALCHEMY_ECHO'] = True
db = SQLAlchemy(app)


# 构建模型类  
class Goods(db.Model):
    __tablename__ = 't_good'  
    id = db.Column(db.Integer, primary_key=True) 
    name = db.Column(db.String(20), unique=True) 
    count = db.Column(db.Integer)  


@app.route('/')
def purchase():

    goods = Goods(name='方便面', count=20)
    db.session.add(goods)
    # 主动执行flush操作, 立即执行SQL操作(数据库同步)
    db.session.flush()

    # Goods.query.count()  # 查询操作会自动执行flush操作
    db.session.commit()  # 提交会话会自动执行flush操作

    return "index"


if __name__ == '__main__':
    db.drop_all()
    db.create_all()

    app.run(debug=True)

多表查询

案例中包含两个模型类: User用户模型 和 Address地址模型, 并且一个用户可以有多个地址, 两张表之间存在一对多关系

class Address(db.Model):__tablename__='t_adr'id = db.Column(db.Integer, primary_key=True)detail = db.Column(db.String(20))user_id = db.Column(db.Integer)
@app.route('/addadr')
def addadr():adr1 = Address(detail='中关村3号', user_id=1)adr2 = Address(detail='华强北5号', user_id=1)db.session.add_all([adr2, adr1])db.session.commit()return "success"


关联查询
关联查询步骤: (以主查从为例)

先查询主表数据
再通过外键字段查询 关联的从表数据

@app.route('/queryadr')
def queryadr():user1 = User.query.filter_by(name='zs').first()adrs = Address.query.filter_by(user_id=user1.id).all()for adr in adrs:print(adr.detail)return "success"


连接查询

开发中有 联表查询需求 时, 一般会使用 join连接查询
sqlalchemy 也提供了对应的查询语法
db.session.query(主表模型字段1, 主表模型字段2, 从表模型字段1, xx.. ).join(从表模型类, 主表模型类.主键 == 从表模型类.外键)
1
join语句 属于查询过滤器, 返回值也是 BaseQuery 类型对象

@app.route('/queryadr2')
def queryadr2():data = db.session.query(User.id, Address.detail).join(Address, User.id==Address.user_id).filter(User.name=='zs').all()for item in data:print(item.detail, item.id)return "success"


关联查询的性能优化

通过前边的学习, 可以发现 无论使用 外键 还是 关系属性 查询关联数据, 都需要查询两次, 一次查询用户数据, 一次查询地址数据
两次查询就需要发送两次请求给数据库服务器, 如果数据库和web应用不在一台服务器中, 则 网络IO会对查询效率产生一定影响
可以考虑使用 连接查询 join 使用一条语句就完成关联数据的查询
# 使用join语句优化关联查询
adrs = Address.query.join(User, Address.user_id == User.id).filter(User.name == '张三').all()  # 列表中包含地址模型对象

Session机制
生命周期
flask-sqlalchemy 对于 sqlalchemy本体 的 Session 进行了一定的封装:
Session的生命周期和请求相近 

请求中的首次数据操作会创建Session
整个请求过程中使用的Session为同一个, 并且线程隔离
请求结束时会自动销毁Session(释放内存)


Session和事务

Session中可以包含多个事务, 提交事务失败后, 会自动执行SQL的回滚操作
同一个请求中, 想要在前一个事务失败的情况下创建新的事务, 必须先手动回滚事务 Session.rollback
from flask import Flask
from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)

# 相关配置
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://root:mysql@127.0.0.1:3306/toutiao'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
app.config['SQLALCHEMY_ECHO'] = True
db = SQLAlchemy(app)


# 构建模型类 
class User(db.Model):
    __tablename__ = 't_user'  
    id = db.Column(db.Integer, primary_key=True)  
    name = db.Column('username', db.String(20), unique=True) 
    age = db.Column(db.Integer, default=0, index=True)  


@app.route('/')
def index():

    """事务1"""
    try:
        user1 = User(name='zs', age=20)
        db.session.add(user1)
        db.session.commit()
    except BaseException:
        # 手动回滚   同一个session中, 前一个事务如果失败, 必须手动回滚, 否则无法创建新的事务
        db.session.rollback()

    """事务2"""
    user1 = User(name='lisi', age=30)
    db.session.add(user1)
    db.session.commit()

    return "index"


if __name__ == '__main__':
    """为了进行测试, 首次运行 建表并添加一条测试数据后, 注释下方代码, 并重新运行测试"""

    # 重置所有继承自db.Model的表
    # db.drop_all()
    # db.create_all()

    # 添加一条测试数据
    # user1 = User(name='zs', age=20)
    # db.session.add(user1)
    # db.session.commit()

    app.run(debug=True)

数据迁移


flask-migrate组件 为flask-sqlalchemy提供了数据迁移功能, 以便进行数据库升级, 如增加字段、修改字段类型等
安装组件 pip install flask-migrate

# hm_数据迁移.py 

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from flask_migrate import Migrateapp = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql+pymysql://root:yu201541010@127.0.0.1:3306/pythontest'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = Falsedb = SQLAlchemy(app)
#迁移组件初始化
Migrate(app, db)
class User(db.Model):__tablename__ ='t_user'id = db.Column(db.Integer, primary_key=True)name = db.Column('username', db.String(20), unique=True)@app.route('/')
def index():return "index"if __name__ =='__main__':app.run()


执行迁移命令

终端进入当前文件目录下,注意export命令后面等号不能有空格

  1. export FLASK_APP=hm_数据迁移.py  # 设置环境变量指定启动文件
  2. flask db init  # 生成迁移文件夹  只执行一次
  3. flask db migrate  # ⽣成迁移版本, 保存到迁移文件夹中
  4. flask db upgrade  # 执行迁移


执行迁移命令前需要先设置环境变量指定启动文件

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43353.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

spring的核心技术---bean的生命周期加案例分析详细易懂

目录 一.spring管理JavaBean的初始化过程(生命周期) Spring Bean的生命周期: 二.spring的JavaBean管理中单例模式及原型(多例)模式 2.1 . 默认为单例,但是可以配置多例 2.2.举例论证 2.2.1 默认单例 2.2…

前端常用算法(一):防抖+节流

目录 第一章 防抖 1.1 防抖(debounce)简介 1.2 应用场景 1.3 实现思路 1.4 手撕防抖代码 第二章 节流 2.1 节流(throttle)简介 2.2 应用场景 2.3 实现思路 2.4 手撕节流代码(方法:时间戳和计时器…

MR300C工业无线WiFi图传模块 内窥镜机器人图像传输有线无线的两种方式

MR300C无线WiFi图传模使用方法工业机器人图像高清传输 ⚫ MR300C图传模块基于MIPS处理器实现,电脑/手机连接模块的WIFI热点或网口即可查看视频流 ⚫ 模块的USB 2.0 Host接口,可接入USB uvc摄像头/内窥镜默认输出的视频格式必须是MJPG ⚫ 模块支持接入摄…

计算机竞赛 图像识别-人脸识别与疲劳检测 - python opencv

文章目录 0 前言1 课题背景2 Dlib人脸识别2.1 简介2.2 Dlib优点2.3 相关代码2.4 人脸数据库2.5 人脸录入加识别效果 3 疲劳检测算法3.1 眼睛检测算法3.3 点头检测算法 4 PyQt54.1 简介4.2相关界面代码 5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是…

MongoDB升级经历(4.0.23至5.0.19)

MongoDB从4.0.23至5.0.19升级经历 引子:为了解决MongoDB的两个漏洞决定把MongoDB升级至最新版本,期间也踩了不少坑,在这里分享出来供大家学习与避坑~ 1、MongoDB的两个漏洞 漏洞1:MongoDB Server 安全漏洞(CVE-2021-20330) 漏洞2…

SpringBoot + Vue 微人事(十二)

职位批量删除实现 编写后端接口 PositionController DeleteMapping("/")public RespBean deletePositionByIds(Integer[] ids){if(positionsService.deletePositionsByIds(ids)ids.length){return RespBean.ok("删除成功");}return RespBean.err("删…

工业视觉相机镜头选型方法

一、相机选型 1、首先,根据检测需求确定选用黑白/彩色、面阵/线阵相机,接口类型一般选择GigE 2、确定检测精度要求(最小特征尺寸mm)、视野范围,一个测量精度对应几个像素数(一般取3-5) 3、计…

esp32c3 micropython oled实时天气信息

目录 简介 效果展示 代码 main.py ssd1306.py font.py 实现思路 简介 合宙esp32c3 micropython框架,只支持128*64 I2C oled ssd1306驱动我优化过的,与其他的不一样,为避免出错,使用我的驱动 把下面两个py文件放入单片机内…

SqlServer的with(nolock)关键字的用法介绍

举个例子 下面就来演示这个情况。 为了演示两个事务死锁的情况,我们下面的测试都需要在SQL Server Management Studio中打开两个查询窗口。保证事务不被干扰。 --1、 没有提交的事务,NOLOCK 和 READPAST处理的策略: --查询窗口一请执行如下…

【马蹄集】第二十三周——进位制专题

进位制专题 目录 MT2186 二进制?不同!MT2187 excel的烦恼MT2188 单条件和MT2189 三进制计算机1MT2190 三进制计算机2 MT2186 二进制?不同! 难度:黄金    时间限制:1秒    占用内存:128M 题目…

SQL力扣练习(十一)

目录 1.树节点(608) 示例 1 解法一(case when) 解法二(not in) 2.判断三角形(610) 示例 1 解法一(case when) 解法二(if) 解法三(嵌套if) 3.只出现一次的最大数字(619) 示例 1 解法一(count limit) 解法二(max) 4.有趣的电影(620) 解法一 5.换座位(626) 示例 …

同步jenkinsfile流水线(sync-job)

环境 变量:env(环境变量:sit/dev/simulation/prod/all),job(job-name/all)目录:/var/lib/jenkins/jenkinsfile environment.json: [roottest-01 jenkinsfile]# cat env…

C++ string类的模拟实现

模拟实现string类不是为了造一个更好的轮子,而是更加理解string类,从而来掌握string类的使用 string类的接口设计繁多,故而不会全部涵盖到,但是核心的会模拟实现 库中string类是封装在std的命名空间中的,所以在模拟…

使用PostgreSQL构建强大的Web应用程序:最佳实践和建议

PostgreSQL是一个功能强大的开源关系型数据库,它拥有广泛的用户群和活跃的开发社区。越来越多的Web应用选择PostgreSQL作为数据库 backend。如何充分利用PostgreSQL的特性来构建健壮、高性能的Web应用?本文将给出一些最佳实践和建议。 一、选择合适的PostgreSQL数据类型 Pos…

【Vue】Mixin 混入

Vue Mixin 混入 1.简介 混入(mixin)提供了一种非常灵活的方式,来分发 Vue 组件中的可复用功能。一个混入对象可以包含任意组件选项(如data、methods、mounted等等)。当组件使用混入对象时,所有混入对象的…

鸿蒙剥离 AOSP 不兼容 Android 热门问题汇总,不吹不黑不吵

上周发了一篇 《鸿蒙终于不套壳了?纯血 HarmonyOS NEXT 即将到来》的相关资讯,没想到大家「讨(fa)论(xie)」的热情很高,莫名蹭了一波流量,虽然流量对我来说也没什么用,但…

私密数据采集:隧道爬虫IP技术的保密性能力探究

作为一名专业的爬虫程序员,今天要和大家分享一个关键的技术,它能够为私密数据采集提供保密性能力——隧道爬虫IP技术。如果你在进行敏感数据采集任务时需要保护数据的私密性,那么这项技术将是你的守护神。 在进行私密数据采集任务时&#xff…

图像去雨-雨线清除-图像处理-(计算机作业附代码)

背景 多年来,图像去雨已经被广泛研究,使用传统方法和基于学习的方法。然而,传统方法如高斯混合模型和字典学习方法耗时,并且无法很好地处理受到严重雨滴影响的图像块。 算法 通过考虑雨滴条状特性和角度分布,这个问…

【Leetcode】98. 验证二叉搜索树

一、题目 1、题目描述 给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下: 节点的左子树只包含 小于 当前节点的数。节点的右子树只包含 大于 当前节点的数。所有左子树和右子树自身必须也是二叉搜索树。示例1: 输入:root = …