Tensorflow模型加载与保存、Tensorboard简单使用

 

先上代码:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 14 20:34:00 2017@author: HJL
"""# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================="""A deep MNIST classifier using convolutional layers.See extensive documentation at
https://www.tensorflow.org/get_started/mnist/pros
"""
# Disable linter warnings to maintain consistency with tutorial.
# pylint: disable=invalid-name
# pylint: disable=g-bad-import-orderimport argparse
import sys
#import tempfile
import time
from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tfFLAGS = Nonedef deepnn(x):"""deepnn builds the graph for a deep net for classifying digits.Args:x: an input tensor with the dimensions (N_examples, 784), where 784 is thenumber of pixels in a standard MNIST image.Returns:A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with valuesequal to the logits of classifying the digit into one of 10 classes (thedigits 0-9). keep_prob is a scalar placeholder for the probability ofdropout."""# Reshape to use within a convolutional neural net.# Last dimension is for "features" - there is only one here, since images are# grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.with tf.name_scope('reshape'):x_image = tf.reshape(x, [-1, 28, 28, 1])tf.summary.image('input_image', x_image)# First convolutional layer - maps one grayscale image to 32 feature maps.with tf.name_scope('conv1'):W_conv1 = weight_variable([5, 5, 1, 32])b_conv1 = bias_variable([32])h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)tf.summary.histogram('W_conv1', W_conv1)# Pooling layer - downsamples by 2X.with tf.name_scope('pool1'):h_pool1 = max_pool_2x2(h_conv1)# Second convolutional layer -- maps 32 feature maps to 64.with tf.name_scope('conv2'):W_conv2 = weight_variable([5, 5, 32, 64])b_conv2 = bias_variable([64])h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)# Second pooling layer.with tf.name_scope('pool2'):h_pool2 = max_pool_2x2(h_conv2)# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image# is down to 7x7x64 feature maps -- maps this to 1024 features.with tf.name_scope('fc1'):W_fc1 = weight_variable([7 * 7 * 64, 1024])b_fc1 = bias_variable([1024])h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)# Dropout - controls the complexity of the model, prevents co-adaptation of# features.with tf.name_scope('dropout'):keep_prob = tf.placeholder(tf.float32)h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)# Map the 1024 features to 10 classes, one for each digitwith tf.name_scope('fc2'):W_fc2 = weight_variable([1024, 10])b_fc2 = bias_variable([10])y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2return y_conv, keep_probdef conv2d(x, W):"""conv2d returns a 2d convolution layer with full stride."""return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')def max_pool_2x2(x):"""max_pool_2x2 downsamples a feature map by 2X."""return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')def weight_variable(shape):"""weight_variable generates a weight variable of a given shape."""initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)def bias_variable(shape):"""bias_variable generates a bias variable of a given shape."""initial = tf.constant(0.1, shape=shape)return tf.Variable(initial)def main(_):# Import datamnist = input_data.read_data_sets('./', one_hot=True)# Create the modelx = tf.placeholder(tf.float32, [None, 784])# Define loss and optimizery_ = tf.placeholder(tf.float32, [None, 10])# Build the graph for the deep nety_conv, keep_prob = deepnn(x)with tf.name_scope('loss'):cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_,logits=y_conv)cross_entropy = tf.reduce_mean(cross_entropy)with tf.name_scope('adam_optimizer'):#train_step = tf.train.AdadeltaOptimizer(1e-4).minimize(cross_entropy)train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)with tf.name_scope('accuracy'):correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))correct_prediction = tf.cast(correct_prediction, tf.float32)accuracy = tf.reduce_mean(correct_prediction)graph_location = "./log/"  #tempfile.mkdtemp()print('Saving graph to: %s' % graph_location)train_writer = tf.summary.FileWriter(graph_location)train_writer.add_graph(tf.get_default_graph())#保存默认的图tf.summary.scalar('cross_entropy', cross_entropy)tf.summary.scalar('accuracy', accuracy)merged = tf.summary.merge_all()with tf.Session() as sess:#模型保存  step1saver = tf.train.Saver()checkpoint_dir="./"#返回checkpoint文件中checkpoint的状态ckpt = tf.train.get_checkpoint_state(checkpoint_dir)#print(ckpt)if ckpt and ckpt.model_checkpoint_path:#如果存在以前保存的模型print('Restore the model from checkpoint %s' % ckpt.model_checkpoint_path)# Restores from checkpointsaver.restore(sess, ckpt.model_checkpoint_path)#加载模型start_step = int(ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1])else:#如果不存在之前保存的模型sess.run(tf.global_variables_initializer())#变量初始化start_step = 0print('start training from new state')      for i in range(start_step,start_step+20000):batch = mnist.train.next_batch(50)if i % 100 == 0:train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})print('step %d, training accuracy %g' % (i, train_accuracy))#step2   每隔一段时间 保存模型saver.save(sess, './log/my_test_model',global_step=i)summary,_=sess.run([merged, train_step],feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})train_writer.add_summary(summary, i)#time.sleep(0.5)print('test accuracy %g' % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))if __name__ == '__main__':#main()
  parser = argparse.ArgumentParser()parser.add_argument('--data_dir', type=str,default='./data/MNIST/',help='Directory for storing input data')FLAGS, unparsed = parser.parse_known_args()tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

 上述代码输出如下:

 

模型的加载与保存

模型的保存涉及到两个函数:

saver = tf.train.Saver()

saver.save(sess, './log/my_test_model',global_step=i)

即,先创建tf.train.Saver 对象,用于后续模型保存与加载,默认保存所有参数。saver.save用于将模型及参数保存到文件中,通过传递一个值给可选参数 global_step ,你可以编号checkpoint 名字。上述代码中每隔100步,将模型保存一次。保存结果如下(默认保存最新的5个模型):

 

 对于模型的加载,涉及如下函数:

saver = tf.train.Saver()

saver.restore(sess, ckpt.model_checkpoint_path)
 
tf.train.Saver.restore(sess, save_path)
恢复之前保存的变量
这个方法运行构造器为恢复变量所添加的操作。它需要启动图的Session。恢复的变量不需要经过初始化,恢复作为初始化的一种方法。
save_path 参数是之前调用save() 的返回值,或调用 latest_checkpoint() 的返回值。
参数:
  • sess:  用于恢复参数的Session
  • save_path:  参数之前保存的路径

 

TensorBoard简单使用

涉及如下几个函数:

train_writer = tf.summary.FileWriter(graph_location)
train_writer.add_graph(tf.get_default_graph())...tf.summary.scalar('cross_entropy', cross_entropy)#
tf.summary.scalar('accuracy', accuracy)
tf.summary.image('input_image', x_image)
tf.summary.histogram('W_conv1', W_conv1)
merged = tf.summary.merge_all()...
summary,_=sess.run([merged, train_step],feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
train_writer.add_summary(summary, i)

 

 

  • Summary:所有需要在TensorBoard上展示的统计结果。

  • tf.name_scope():为Graph中的Tensor添加层级,TensorBoard会按照代码指定的层级进行展示,初始状态下只绘制最高层级的效果,点击后可展开层级看到下一层的细节。

  • tf.summary.scalar():添加标量统计结果。

  • tf.summary.histogram():添加任意shape的Tensor,统计这个Tensor的取值分布。

  • tf.summary.merge_all():添加一个操作,代表执行所有summary操作,这样可以避免人工执行每一个summary op。

  • tf.summary.FileWrite:用于将Summary写入磁盘,需要制定存储路径logdir,如果传递了Graph对象,则在Graph Visualization会显示Tensor Shape Information。执行summary op后,将返回结果传递给add_summary()方法即可。

 

最后结果:

Scalar

(对应:

tf.summary.scalar('cross_entropy', cross_entropy)
tf.summary.scalar('accuracy', accuracy)

 

 

对应:

tf.summary.image('input_image', x_image)

 

 

 对应:

train_writer.add_graph(tf.get_default_graph())

 

 

 

对应:

tf.summary.histogram('W_conv1', W_conv1)

 

 

 

转载于:https://www.cnblogs.com/hejunlin1992/p/7840864.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/428576.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

cesium添加填充_Cesium中级教程1 - 空间数据可视化(一)

Cesium中文网:http://cesiumcn.org/| 国内快速访问:http://cesium.coinidea.com/本教程将教读者如何使用Cesium的实体(Entity)API绘制空间数据,如点、标记、标签、线、模型、形状和物体。不需要Cesium的先验知识&#…

高可用-软件heartbeat的入门介绍

注:参考互联网整理. 一、简介Linux-HA的全称是High-Availability Linux,它是一个开源项目,这个开源项目的目标是:通过社区开发者的共同努力,提供一个增强linux可靠性(reliability)、可用性(avai…

图论板子——迪杰斯特拉(堆优化)

bool st[N];//是否加入图 int d[N];//到起点的距离 void dj(int S,int T)//从S到T {priority_queue<PII,vector<PII>,greater<PII> > q;q.push({0,S});memset(d,0x3f,sizeof d);d[S] 0;while (!q.empty()){auto it q.top();q.pop();int ver it.second;if …

atomic原子类实现机制_并发编程:并发操作原子类Atomic以及CAS的ABA问题

本文基于JDK1.8Atomic原子类原子类是具有原子操作特征的类。原子类存在于java.util.concurrent.atmic包下。根据操作的数据类型&#xff0c;原子类可以分为以下几类。基本类型AtomicInteger&#xff1a;整型原子类AtomicLong&#xff1a;长整型原子类AtomicBoolean&#xff1a;…

c# winform窗体如何设置才可以不能随意拖动大小

执行以下两个步骤&#xff0c;能够禁止用户改变窗体的大小 &#xff08;一&#xff09;步骤1 设置窗体的FormBorderStyle属性为下列五个值中的任意一个 None&#xff1a;将窗口设置为无边框、无标题栏。用户无法改变窗口的大小&#xff0c;也无法改变窗口显示的位置&#xff1b…

图论板子——spfa

bool st[N];//是否在队列中 int d[N];//到起点的距离 void dj(int S,int T)//从S到T {queue<int>q;q.push(S);memset(d,0x3f,sizeof d);d[S] 0;while (!q.empty()){int ver q.front();q.pop();st[ver] false;//出队for (int i h[ver];i ! -1;i h[i]){int x e[i];in…

增加数据_咱晋城人口又增加了?最新数据来了

微信广告合作/13903568008、13663561666近日山西省统计局山西省人口抽样调查办公室联合发布2019年山西省人口变动情况抽样调查主要数据公报全省哪个地市人最多&#xff1f;男女比例如何&#xff1f;……1常住人口根据抽样调查全省人口出生率为9.12‰比上年下降0.51个千分点人口…

图论模板——最大流问题

Dinic算法的时间复杂度为O&#xff08;n^2m&#xff09;。实际运用远远小于这个上界。 特别的&#xff0c;Dinic算法求解二分图最大匹配的时间复杂度为O&#xff08;msqrt&#xff08;n&#xff09;&#xff09; 最大流问题模板 #include <bits/stdc.h> using namespace…

python简述目录_Python源码下载和目录简介(示例代码)

Python源码下载和目录简介一、Python源码下载1、Linux操作系统下使用终端命令下载&#xff1a;wget https://www.python.org/ftp/python/3.7.4/Python-3.7.4.tgz // 获取源码压缩包tar -xf Python-3.7.4.tgz // 解压2、非Linux操作系统下载&#xff1a;(2)滑到最下面&#xff0…

Linux之Ubuntu安装搜狗输入法

1.下载搜狗输入法安装包 搜狗官网&#xff1a;https://pinyin.sogou.com/linux/ 2.更新ubuntu内置的包管理器apt-get的软件源[如果中途安装失败&#xff0c;经常是此原因造成的] sudo apt-get update sudo aot-get upgrade //如果有需要的话 3.dpkg -i &#xff08;下载搜狗下来…

数据结构板子——splay

维护数列 https://www.acwing.com/problem/content/957/ 线段树能写的splay都能写&#xff0c;不过splay常数较大。时间复杂度大概是线段树的三倍 #include<bits/stdc.h> using namespace std; const int N 500010,INF 1e9; int n,m; struct Node {int s[2],p,v;int r…

怎么让wegame适应屏幕大小_iOS的五大设计原则:统一化和适应化原则

昨天米醋跟大家分享了iOS的五大设计原则中凸显内容原则&#xff0c;那么今天我们继续来说说统一化原则和适应化原则。统一化原则统一化原则主要体现在视觉统一和交互统一两个方面。在视觉统一方面&#xff0c;要讲究字体、颜色和元素的统一性&#xff0c;标题字号的统一&#x…

23种设计模式之原型模式代码实例

原型模式就是利用一个克隆”原型“来产生新对象的一种模式&#xff0c; 克隆又分浅克隆与深克隆&#xff0c; 浅克隆&#xff1a;将一个对象复制后&#xff0c;基本数据类型的变量都会重新创建&#xff0c;而引用类型&#xff0c;指向的还是原对象所指向的。 深克隆&#xff1a…

图论模板——费用流(无法处理负环)

费用流 https://www.acwing.com/problem/content/2176/ //最大流的最小费用 #include<bits/stdc.h> using namespace std;const int N 5010, M 100010, INF 1e8;int n,m,S,T; int ne[M],e[M],f[M],w[M],h[N],idx; int q[N],d[N],pre[N],incf[N]; bool st[N];void add…

css调用外部字体

CSS中可以使用font-face属性即可实现调用任何外部等特殊字体。 font-face属性介绍及其实例&#xff1a; 对浏览器的支持&#xff1a; Firefox、Chrome、Safari 以及 Opera 支持 .ttf (True Type Fonts) 和 .otf (OpenType Fonts) 类型的字体。 Internet Explorer 9 支持新的 fo…

python注入点查找_sqlmap常用注入点检测爆破命令

1、检测注入点是否可用python sqlmap.py -u "url"2、从目标url爆破所有数据库名python sqlmap.py -u "url" --dbs3、从目标url爆破当前数据库名python sqlmap.py -u "url" --current-dbs4、列出数据库所有用户python sqlmap.py -u "url&quo…

python如何输入空行_在python中,如何在接受用户输入时跳过空行?

您得到的行为是预期的&#xff0c;请阅读input文档。在input([prompt])If the prompt argument is present, it is written to standard output without a trailing newline. The function then reads a line from input, converts it to a string (stripping a trailing newli…

js层级选择框样式_【JavaWeb】85:jQuery的各种选择器

今天是刘小爱自学Java的第85天。感谢你的观看&#xff0c;谢谢你。话不多说&#xff0c;开始今天的学习&#xff1a;选择器的作用是什么&#xff1f;可以快速准确地定位我们所需要的标签。刚学CSS的时候&#xff0c;觉得CSS选择器也太多了吧&#xff0c;直到今天学了jQuery选择…

python的单例模式

单例模式(Singleton Pattern)&#xff0c;是一种软件设计模式&#xff0c;是类只能实例化一个对象&#xff0c; 目的是便于外界的访问&#xff0c;节约系统资源&#xff0c;如果希望系统中 只有一个对象可以访问&#xff0c;就用单例模式&#xff0c; 显然单例模式的要点有三个…