OpenCv学习笔记(二)—cv Mat学习

由于在写上一篇图像的数据结构时,发现自己只知道CvMat,竟然还有Mat数据结构,真是无知了,看了这么多程序,貌似没有看到这个结构。有可能那些程序都是些老版本的例子,这是在2.0以后加上的,所以我也得紧跟呀!以下是自己的学习心得。。。。

一、Mat简介
    在2001年刚刚出现的时候,OpenCV基于 C 语言接口而建。为了在内存(memory)中存放图像,当时采用名为 IplImage 的C语言结构体,时至今日这仍出现在大多数的旧版教程和教学材料。但这种方法必须接受C语言所有的不足,这其中最大的不足要数手动内存管理,其依据是用户要为开辟和销毁内存负责。虽然对于小型的程序来说手动管理内

一、Mat简介
    在2001年刚刚出现的时候,OpenCV基于 C 语言接口而建。为了在内存(memory)中存放图像,当时采用名为 IplImage 的C语言结构体,时至今日这仍出现在大多数的旧版教程和教学材料。但这种方法必须接受C语言所有的不足,这其中最大的不足要数手动内存管理,其依据是用户要为开辟和销毁内存负责。虽然对于小型的程序来说手动管理内存不是问题,但一旦代码开始变得越来越庞大,你需要越来越多地纠缠于这个问题,而不是着力解决你的开发目标。

   幸运的是,C++出现了,并且带来类的概念,这给用户带来另外一个选择:自动的内存管理(不严谨地说)。这是一个好消息,如果C++完全兼容C的话,这个变化不会带来兼容性问题。为此,OpenCV在2.0版本中引入了一个新的C++接口,利用自动内存管理给出了解决问题的新方法。使用这个方法,你不需要纠结在管理内存上,而且你的代码会变得简洁(少写多得)。但C++接口唯一的不足是当前许多嵌入式开发系统只支持C语言。所以,当目标不是这种开发平台时,没有必要使用旧 方法(除非你是自找麻烦的受虐狂码农)。

   关于 Mat ,首先要知道的是你不必再手动地(1)为其开辟空间(2)在不需要时立即将空间释放。但手动地做还是可以的:大多数OpenCV函数仍会手动地为输出数据开辟空间。当传递一个已经存在的Mat 对象时,开辟好的矩阵空间会被重用。也就是说,我们每次都使用大小正好的内存来完成任务。

   基本上讲 Mat 是一个类,由两个数据部分组成:矩阵头(包含矩阵尺寸,存储方法,存储地址等信息)和一个指向存储所有像素值的矩阵(根据所选存储方法的不同矩阵可以是不同的维数)的指针。矩阵头的尺寸是常数值,但矩阵本身的尺寸会依图像的不同而不同,通常比矩阵头的尺寸大数个数量级。因此,当在程序中传递图像并创建拷贝时,大的开销是由矩阵造成的,而不是信息头。OpenCV是一个图像处理库,囊括了大量的图像处理函数,为了解决问题通常要使用库中的多个函数,因此在函数中传递图像是家常便饭。同时不要忘了我们正在讨论的是计算量很大的图像处理算法,因此,除非万不得已,我们不应该拷贝大 的图像,因为这会降低程序速度。

二、Mat的基本操作

   这里展示一个例子解释一下Mat的基本操作
#include<cv.h>#include<highgui.h>#include<iostream>using namespace cv;using namespace std;int main(){/*********************************Mat基本操作-矩阵*******************************************/    //二维三通道矩阵建立    Mat M(2,2, CV_8UC3, Scalar(0,0,255)); //使用构造函数创建矩阵/*CV_8UC3 表示使用8位的 unsigned char 型,每个像素由三个元素组成三通道,初始化为(0,0,255)*/    cout << "M = " << endl << " " << M << endl << endl; //格式化输出    //三维    int sz[3] = {3,3,3};     Mat L(3,sz, CV_8UC(1), Scalar::all(0));/*超过两维的矩阵:指定维数,然后传递一个指向一个数组的指针,这个数组包含每个维度的尺寸;其余的相同*/    cout << "L = " << endl << " " << M << endl << endl; //格式化输出/********************************************Mat基本操作-图像*******************************/   Mat A, C;      // 只创建信息头部分    A=imread("D:\\openCV\\openCVProject\\openCv笔记\\openCv笔记\\test.jpg", CV_LOAD_IMAGE_COLOR); // 这里为矩阵开辟内存    Mat B(A);                // 使用拷贝构造函数    C = A;                  // 赋值运算符    /* 拷贝构造函数和赋值函数 只拷贝信息头和矩阵指针 */    Mat D (A, Rect(10, 10, 100, 100) ); //选取A中一个矩形区域,即只访问其矩形区域的信息头,只是创建信息头 Mat E = A(cv::Range::all(), Range(1,3)); // 创建访问边界的信息头。    /*    要创建一个感兴趣区域( ROI ),你只需要创建包含边界信息的信息头 */    Mat F = A.clone();//复制图像,包括数据    Mat G;    A.copyTo(G);    /* 拷贝矩阵本身(不只是信息头和矩阵指针), */ //测试 namedWindow( "a", CV_WINDOW_AUTOSIZE ); namedWindow( "c", CV_WINDOW_AUTOSIZE );  imshow( "a", D); imshow( "c", E );  /****************************************图像的读取、处理和保存**************************************/   Mat image;  image = imread( "D:\\openCV\\openCVProject\\openCv笔记\\openCv笔记\\test.jpg", CV_LOAD_IMAGE_COLOR);//导入图像  if( !image.data )  {     cout<< " No image data \n " ;     return -1;  }  Mat gray_image;  cvtColor( image, gray_image, CV_BGR2GRAY );//转化为灰度图  imwrite( "../../images/Gray_Image.jpg", gray_image );//写入图像  namedWindow( "source", CV_WINDOW_AUTOSIZE );  namedWindow( "Gray image", CV_WINDOW_AUTOSIZE );  imshow( "source", image );  imshow( "Gray image", gray_image );     /*******************************************************************************************/  waitKey(0);  return 0;} 

 对于Mat数据结构,在对图像进行处理时要注意:

OpenCV函数中输出图像的内存分配是自动完成的(如果不特别指定的话)。
使用OpenCV的C++接口时不需要考虑内存释放问题。
赋值运算符和拷贝构造函数( ctor )只拷贝信息头。
使用函数 clone() 或者copyTo() 来拷贝一副图像的矩阵 

三、扫描图像的方法
#include<cv.h>#include<highgui.h>#include<time.h>#include<iostream>using namespace cv;using namespace std;int main(){    //Mat img(10,10,CV_8UC3,Scalar(0,0,255)); Mat img,img_gray,img_gray2; img=imread("D:\\openCV\\openCVProject\\openCv笔记\\openCv笔记\\test.jpg", CV_LOAD_IMAGE_COLOR);    cvtColor( img, img_gray, CV_BGR2GRAY );//转化为灰度图 img_gray.copyTo(img_gray2);    //方式一 for( int i=0;i<img_gray.rows;i++) {  uchar* data = img_gray.ptr<uchar>(i);  for(int j=0;j<img_gray.cols;j++)  {   data[j] = 255;   } } //img.create(10,10,CV_8UC3,Scalar(0,0,255)); //cout << "img = " << endl << " " << img_gray << endl << endl; //格式化输出    //方式二 W*H的一幅图像看成是一个1*(w*h)的一个一维数组 int nc; if(img_gray.isContinuous())//判断是否被所有的像素填满 {  nc = img_gray.rows*img_gray.cols*img_gray.channels();  } else {  cout<<"像素未填满,不可用第二种方式"<<endl;  return -1; } uchar* data_2 = img_gray.ptr<uchar>(0);//提取第一个像素点指针 for(int i=0;i<nc;i++)//遍历所有的元素 {  data_2[i] = 255; }    //方式三指针扫描 uchar* data_3 = img.data;//单个元素 img.at<uchar>(0,0)=0for(int i=0;i<img.rows;i++)//遍历所有的元素 {  for(int j=0;j<img.cols;j++)  {             data_3 = img.data + i*img.step + j * img.elemSize();     //对各个通道赋值    data_3[0]=100;             data_3[1]=100;    data_3[2]=100;  } } /*时间函数    double start = getTickCount(); finish = clock();     duration = (double)(finish - start) / CLOCKS_PER_SEC;     */ //方式四 迭代器iterator扫描图像 Mat_<Vec3b>::iterator it = img.begin<Vec3b>();   Mat_<Vec3b>::iterator itend = img.end<Vec3b>();   for (; it!=itend; it++)   {         //对各个通道赋值    (*it)[0] = 200;      (*it)[1] = 200;     (*it)[2] = 200;  }       //测试,根据自己的选择查看结果 namedWindow("sorce",WINDOW_AUTOSIZE); namedWindow("result",WINDOW_AUTOSIZE); cv::imshow("sorce",img); cv::imshow("result",img_gray); waitKey(0); return 0;}

以上是对http://blog.csdn.net/yang_xian521/article/details/7182185#的综合,以下是其博文,正如博主所说的, data_3 = img.data + i*img.step + j * img.elemSize();,int i=0;i<img_gray.rows;i++。。。这种在循环中出现的语句识别比较耗时的,注意避免。以下是其博文

1.存取单个像素值
最通常的方法就是
img.at<uchar>(i,j) = 255;img.at<Vec3b>(i,j)[0] = 255;

如果你觉得at操作显得太笨重了,不想用Mat这个类,也可以考虑使用轻量级的Mat_类,使用重载操作符()实现取元素的操作。
cv::Mat_<uchar> im2= img; // im2 refers to image   im2(50,100)= 0; // access to row 50 and column 100

2.用指针扫描一幅图像

对于一幅图像的扫描,用at就显得不太好了,还是是用指针的操作方法更加推荐。先介绍一种上一讲提到过的
for (int j=0; j<nl; j++){        uchar* data= image.ptr<uchar>(j);        for (int i=0; i<nc; i++)       {                                   data[i] = 255;        }}

更高效的扫描连续图像的做法可能是把W*H的衣服图像看成是一个1*(w*h)的一个一维数组,这个想法是不是有点奇葩,这里要利用isContinuous这个函数判断图像内的像素是否填充满,使用方法如下:
if (img.isContinuous()){        nc = img.rows*img.cols*img.channels();}uchar* data = img.ptr<uchar>(0);for (int i=0; i<nc; i++){        data[i] = 255;}

更低级的指针操作就是使用Mat里的data指针,之前我称之为暴力青年,使用方法如下:
uchar* data = img.data;// img.at(i, j)data = img.data + i * img.step + j * img.elemSize();

3.用迭代器iterator扫描图像

和C++STL里的迭代器类似,Mat的迭代器与之是兼容的。是MatIterator_。声明方法如下:
cv::MatIterator_<Vec3b> it;  

或者是:
cv::Mat_<Vec3b>::iterator it;
扫描图像的方法如下:
Mat_<Vec3b>::iterator it = img.begin<Vec3b>();Mat_<Vec3b>::iterator itend = img.end<Vec3b>();for (; it!=itend; it++){         (*it)[0] = 255;}

4.高效的scan image方案总结
还是用我们之前使用过的getTickCount、getTickFrequency函数测试速度。这里我就不一一列举我测试的结果了,直接上结论。测试发现,好的编写风格可以提高50%的速度!要想减少程序运行的时间,必要的优化包括如下几个方面:


(1)内存分配是个耗时的工作,优化之;
(2)在循环中重复计算已经得到的值,是个费时的工作,优化之;举例:
int nc = img.cols * img.channels();for (int i=0; i<nc; i++){.......}//**************************for (int i=0; i<img.cols * img.channels(); i++){......}

后者的速度比前者要慢上好多。
(3)使用迭代器也会是速度变慢,但迭代器的使用可以减少程序错误的发生几率,考虑这个因素,可以酌情优化
(4)at操作要比指针的操作慢很多,所以对于不连续数据或者单个点处理,可以考虑at操作,对于连续的大量数据,不要使用它
(5)扫描连续图像的做法可能是把W*H的衣服图像看成是一个1*(w*h)的一个一维数组这种办法也可以提高速度。短的循环比长循环更高效,即使他们的操作数是相同的

以上的这些优化可能对于大家的程序运行速度提高并不明显,但它们毕竟是个得到速度提升的好的编程策略,希望大家能多采纳。
还有就是利用多线程也可以高效提高运行速度。OpenMP和TBB是两种流行的APT,不过对于多线程的东西,我是有些迷糊的,呵呵

5.整行整列像素值的赋值
对于整行或者整列的数据,可以考虑这种方式处理
img.row(i).setTo(Scalar(255));img.col(j).setTo(Scalar(255));
这节就先介绍这么多攻略吧~希望大家喜欢

参考资料


          1.http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/core/mat%20-%20the%20basic%20image%20container/mat%20-%20the%20basic%20image%20container.html


          2http://blog.sina.com.cn/s/blog_73ee929c01010yor.html


                      

再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.csdn.net/jiangjunshow

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/427547.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

5g pdu session_运营商下架4G套餐,用户被5G!

近日&#xff0c;网上突然出现诸多报道&#xff0c;称三大运营商为了推广5G套餐&#xff0c;开始下架4G套餐&#xff0c;用户办理套餐时只能选择价格相对较高的5G套餐。看到这些报道很多网友坐不住了&#xff0c;这难道要倒逼用户改用5G吗&#xff1f;要知道&#xff0c;三大运…

oracle 取前10条记录

--oracle取前十条数据 --(1)第一种 select * from t_base_employee where rownum < 11;--(2)第二种 select *from (select * from t_base_employee t order by t.modify_time desc)where rownum < 10; 转载于:https://www.cnblogs.com/feifeicui/p/9244568.html

OpenCV图像处理形态学操作腐蚀Erode与膨胀Dilate

通俗的说&#xff1a;膨胀算法使图像扩大一圈。腐蚀算法使二值图像减小一圈。腐蚀&#xff1a;删除对象边界的某些像素膨胀&#xff1a;给图像中的对象边界添加像素算法&#xff1a;从图像处理角度看&#xff0c;二值图像的腐蚀和膨胀就是将一个小型二值图&#xff08;结构元素…

台达asda-b2伺服驱动器说明书_台达解决方案提升粉末冶金液压机的控制精度

项目背景粉末冶金液压机是一种利用液体压力来传递能量&#xff0c;实现各种压力加工工艺的机床&#xff0c;适用于各种金属及非金属粉末的压制成形&#xff0c;如铁基、铜基、钨、钛、锰、硼等。某生产企业所应用的粉末冶金液压机采用以台达油电伺服驱动器VFD-VJ系列为核心的控…

hadoop中map和reduce的数量设置问题

转载http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能&#xff0c;hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算&#xff0c;从这个观点来看&#xff0c;如果将map和reduce的数量设置为1&#xff0c;那么用户的任务就没有并行…

shell变量里的字符替换

shell变量里的字符替换b${a/123/321};将${a}里的第一个123替换为321b${a//123/321};将${a}里的所有123替换为321shell调试:sh -x aaa.shfrom:http://bbs.chinaunix.net/viewthread.php?tid218853&extra&page7#pid1628522shell十三问不過&#xff0c;假如你只看到 ${ }…

常州win8如何禁用应用商店_Win8系统当中Windows defnedder安全软件应该如何禁用?...

Win8系统如何禁用defender&#xff1f;Windows defender安全软件但是win8系统自带的&#xff0c;但有时该软件也会与其他软件发生冲突&#xff0c;那么这个时候应该如何禁用Windows defender安全软件呢&#xff1f;接下来就为大家分享win8系统禁用defender的操作方法。操作方法…

Django 的工程创建

1.环境安装 1. 创建虚拟环境 mkvirtualenv django_py3_1.11 -p python3注意需要联网 2. 安装Django 使用django 1.11.11版本&#xff0c;注意需要联网 pip install django1.11.113. 复习虚拟环境和pip的命令 # 虚拟环境 mkvirtualenv # 创建虚拟环境 rmvirtualenv # 删除虚拟…

python提取网页中p标签中的内容_使用Python进行爬虫的初学者指南

前言爬虫是一种从网站上抓取大量数据的自动化方法。即使是复制和粘贴你喜欢的网站上的引用或行&#xff0c;也是一种web抓取的形式。大多数网站不允许你保存他们网站上的数据供你使用。因此&#xff0c;唯一的选择是手动复制数据&#xff0c;这将消耗大量时间&#xff0c;甚至可…

OpenCv的连通域操作

由于项目需要&#xff0c;要对图像中的最大连通域进行标定&#xff0c;并且存储。首先需要使用cvFindCountour对边缘进行标定&#xff0c;其实它的原理就是连通域的边缘提取&#xff1b;其次就是对连通域进行大小判断找出最大的连通域&#xff1b;最后当然就是进行Rect并且ROI了…

DAY5网络

1.用select实现TCP客户端程序 #include <head.h> #define PORT 9999 // 服务器端口号 #define IP "192.168.125.74" // 服务器IP地址#define CIP "192.168.125.74" // 客户端 #define CPORT 6666int main(int argc, const char* argv[]) {// 创建套…

pyCharm最新2018激活码

最近开始研究python&#xff0c;因公司需要获取一些数据&#xff0c;比如电影名&#xff0c;航班名&#xff0c;航班号&#xff0c;列车号等等。所以让我来做一个爬虫去获取数据。所以我们就从这篇博文开始吧&#xff01;&#xff01;&#xff01; 首先告诉大家激活方式&#x…

提高电脑反应速度_设计师笔记本电脑推荐——视觉系ThinkBook 15p创造本

说到设计师笔记本电脑推荐&#xff0c;非近期大热的高颜值、高性能、更出彩的ThinkBook 15p创造本莫属了。作为专为时尚青年量身定做的品牌系列&#xff0c;ThinkBook一直都以“锐意破局”、“以思考重构世界”的理念征服着广大优秀的年轻创意用户&#xff0c;此次推出的全新产…

C语言 system函数

Windows函数windows操作系统下system () 函数详解&#xff08;主要是在C语言中的应用&#xff09; 函数名&#xff1a; system功 能&#xff1a; 发出一个DOS命令用 法&#xff1a; int system(char *command);system函数已经被收录在标准c库中&#xff0c;可以直接调用程序例…

Python format功能

1 #通过位置2 print {0},{1}.format(chuhao,20)3 4 print {},{}.format(chuhao,20)5 6 print {1},{0},{1}.format(chuhao,20)7 8 #通过关键字参数9 print {name},{age}.format(age18,namechuhao) 10 11 class Person: 12 def __init__(self,name,age): 13 self.na…

javascript option 菜单图标_MacBook上神奇的Option键

不知道昨天的(Mac上Command键的妙用)有没有帮助到大家呢&#xff1f;今天我们就来讲一讲Mac上的Option键。Option作为Mac上四大控制键(Shift&#xff0c;Command&#xff0c;Control&#xff0c;Option)之一&#xff0c;Option在单独使用的情况下&#xff0c;很多时候是发挥调出…

OpenCV中cvResize函数图象放缩

图像大小变换void cvResize( const CvArr* src, CvArr* dst, int interpolationCV_INTER_LINEAR );src&#xff1a;输入图像. dst&#xff1a;输出图像. interpolation&#xff1a;差值方法: • CV_INTER_NN - 最近邻差值, • CV_INTER_LINEAR - 双线性差值 (缺省使用) • CV_…

面向对象三大特性: 封装

封装 封装&#xff1a;每个对象都包含有它能进行操作的所有信息&#xff0c;这个特性称为封装。这样的方法包含在类中&#xff0c;通过类的实例来实现。 e.g. 我们可以使用遥控器。 遥控器有多个功能 封装的优点 A.良好的封装能够减少耦合&#xff08;比如实现界面和逻辑分离&a…

学生电脑哪个牌子好_家用医用酒精棉球哪个牌子好,酒精棉片哪个牌子好

酒精制品是现在生活中常用的消毒剂&#xff0c;包括酒精消毒液、酒精洗手液、酒精喷雾剂、酒精湿巾、酒精棉球和酒精棉片等。这些酒精制品各有各的作用&#xff0c;市面上的品牌也比较多。下面就来介绍家用医用酒精棉球哪个牌子好。1、家用医用酒精棉球哪个牌子好目前在市面上使…

OpenCV图像的轮廓的匹配

一个跟轮廓相关的最常用到的功能是匹配两个轮廓.如果有两个轮廓,如何比较它们;或者如何比较一个轮廓和另一个抽象模板.矩比较两个轮廓最简洁的方式是比较他们的轮廓矩.这里先简短介绍一个矩的含义.简单的说,矩是通过对轮廓上所有点进行积分运算(或者认为是求和运算)而得到的一个…