BN本质上解决的是反向传播过程中的梯度问题。
详细点说,反向传播时经过该层的梯度是要乘以该层的参数的,即前向有:
那么反向传播时便有:
那么考虑从l层传到k层的情况,有:
上面这个 便是问题所在。因为网络层很深,如果 大多小于1,那么传到这里的时候梯度会变得很小比如 ;而如果 又大多大于1,那么传到这里的时候又会有梯度爆炸问题 比如 。BN所做的就是解决这个梯度传播的问题,因为BN作用抹去了w的scale影响。
具体有:
() = ()
那么反向求导时便有了:
可以看到此时反向传播乘以的数不再和 的尺度相关,也就是说尽管我们在更新过程中改变了 的值,但是反向传播的梯度却不受影响。更进一步:
即尺度较大的 将获得一个较小的梯度,在同等的学习速率下其获得的更新更少,这样使得整体 的更新更加稳健起来。
总结起来就是BN解决了反向传播过程中的梯度问题(梯度消失和爆炸),同时使得不同scale的 整体更新步调更一致。