自动驾驶,一次道阻且长的远征|数据猿直播干货分享

ec3a2c8b3849ae066aa5ba8be6caea1d.png

755527bb162dc019560617ab5b38fabc.png

e7fdfb89a8e69cee4d25ff3c5359ea3b.png




‍数据智能产业创新服务媒体

——聚焦数智 · 改变商业


在6月的世界人工智能大会上,马斯克在致辞中宣称,到2023年底,特斯拉便可实现L4级或L5级的完全自动驾驶(FSD)。两个月之后,马斯克又在X社交平台上发言:特斯拉正在攻关车辆控制技术,完成FSD人工智能的最后一块拼图。

这意味着,在绝大多数厂商集中攻关L2级、L3级自动驾驶之际,特斯拉直接跳过L3级,直达L4级、L5级的技术终局。马斯克的一系列发言,震惊了汽车业界。

特斯拉的进展,让BEV+Transformer算法的技术路线,逐渐成为业界的主流。中国的蔚小理+华为紧随其后,在城市NOA取得突破。城市NOA是高阶自动驾驶的蝶变,已接近L3级自动驾驶。2023年又被称为城市NOA元年。

在城市NOA火爆之际,国内的L4级自动驾驶,也在取得突破。就在7月,北京亦庄、上海嘉定先后批准了自动驾驶“车内无人”的相关试点。

通向自动驾驶之路,是一次道阻且长的远征。正当智能辅助驾驶进入下半场之际,数据猿邀请利氪科技合伙人兼副总裁文亮、火山引擎智驾云负责人张路、焱融科技分布式存储架构师马志刚举行一场直播对话,直面自动驾驶的问题和解法,展望自动驾驶的未来,献上一场思维碰撞的盛宴。

以下为完整直播回放:

分级正在淡化,业界更关心落地场景

《汽车驾驶自动化分级》国家标准将自动驾驶划分为L0-L5六个等级标准:L0是纯人工驾驶,L1是驾驶自动化,L2是辅助驾驶,L3是自动辅助驾驶,L4是自动驾驶,L5是无人驾驶。

在行业发展趋势上,随着自动泊车、高速巡航、城市NOA等自动驾驶功能走向普及,业界关注的重心已从热衷追求自动驾驶等级,转向具体场景落地。

利氪科技的文亮说,自动驾驶等级由国际性汽车工程师研究会(SAE)明确提出,目的是展示从“人驾”到“人机共驾”最后到“机器驾”的演变过程。但在具体实践中,从L0级-L5级的划分正慢慢淡化,业界更关注自动驾驶的落地场景。落地场景,有泊车场景,有高速场景,有城市场景,业界根据这些场景划分功能,部署落地,更多是从客户体验出发,以客户的最终感受为主。

b3ed0191fa3ec704c3a63ef503b0ebd3.jpeg

火山引擎的张路说,自动驾驶业界正围绕城市NOA等点状功能在布局,对L0级-L5级别的划分并不在意。在张路看来,乘用车最终卖给消费者,消费者关注什么,企业就应当做什么。消费者不在乎自动驾驶等级,更关注的是具体的功能。通过“堆硬件”方式追求L3级、L4级自动驾驶的一些公司发现,消费者对此根本不会埋单。因此,“堆”硬件的方式在业界早已过时,行业的重心是围绕点状功能展开布局,满足消费者的需求。商用车的自动驾驶,则更关心商业闭环能不能成功,对自动驾驶等级的划分,也不在意。

焱融科技的马志刚也认为,自动驾驶的最终落地,离不开具体的场景。在他看来,自动驾驶的普及要最终落到“点”上,也就是落到驾驶安全、用户体感这些“点”上。对于自动驾驶,安不安全、好不好用,才是最关键之处。

纯视觉还是雷达,要看产品本身的表现

场景化,是自动驾驶的未来。为实现场景化的自动驾驶,各大厂商提出了不同的技术路线。纯视觉方案pk激光雷达的技术路线之争,正是自动驾驶领域的一大看点。

在火山引擎的张路看来,特斯拉BEV+Transformer算法的技术标准已经跑通,在美国,特斯拉很快就可以实现FSD。在这个背景下,国内厂商的技术路线已经趋同,不同的只是推进速度的快慢。据张路介绍,以蔚小理为代表的造车新势力技术路线已十分明确,就是BEV+Transformer路线,解决方案上视觉为主,雷达为辅。

对于视觉和雷达之争,利氪的文亮说,其实对于用不用雷达,特斯拉也纠结了许久。对于自动驾驶而言,从安全上考虑,感知工具越多越好,但要落地量产,就一定要有一个取舍。特斯拉的纯视觉方案,目前来看似乎代表了一个方向,但从长远来看,用激光雷达还是用纯视觉方案,还要看产品本身的表现。在文亮看来,即便特斯拉的纯视觉方案取得了成功,激光雷达、毫米波雷达也不会被彻底淘汰,仍会沿着既定的技术路线走向去。或许在将来的某个时间点,激光雷达也会出现新的技术突破。

焱融的马志刚更为倾向视觉+雷达的组合式方案。在马志刚看来,每一种探测手段,都有自己的局限性。之所以自动驾驶至今还不够完美,主要是数据感知、数据处理、数据治理的闭环尚未完善。自动驾驶的现状是,从数据的感知,到中间的决策,再到最后的执行,越往后反而越成熟。前端的感知,是数据的入口,其实最难。马志刚介绍说,从实践上看,摄像头、雷达其实各有所长。焱融服务的商用车、乘用车客户,大多采用组合式方案,而焱融也更擅长处理混合型数据。

巨额数据成本,企业不得不面对的难题

无论是纯视觉方案,还是视觉+雷达的组合式方案,数据都是自动驾驶的灵魂。没有数据建设、数据处理、数据治理,自动驾驶也就无从谈起。

在马志刚看来,数据的建设、数据的闭环处理,其实有一定的门槛。对自动驾驶企业而言,数据量基本都呈指数级膨胀。数据量的增长,使得算法越来越复杂。自动驾驶的研发过程,是一个升级打怪的过程,会越来越难。居高不下的数据管理成本,是企业不得不面对的现实问题。

c43474398f81698524e5a5229c69b042.jpeg

火山引擎的张路说,对自动驾驶企业来说,目前两块成本最大,一块是数据管理,一块是模型训练。在数据管理方面,自动驾驶企业处理的数据,已达到几十、上百PB的量级,每年消耗上亿的成本。怎么挖掘海量数据的价值,一直是行业的难点。

在模型训练方面,在大模型成熟之前,数据标注也需要配备大量的人力,消耗大量的成本。有一种说法是,对自动驾驶而言,有多少人工,就有多少智能。另一方面,Transformer算法也是未来通用人工智能领域一个绕不开的算法。大模型对GPU的需求十分大,不少自动驾驶公司每年都是上亿的投入在模型训练里边。

张路说,作为字节跳动旗下的云计算公司,火山引擎将在数据处理、模型训练方面提供解决方案,为客户降本增效。

据张路介绍,火山引擎复用了抖音处理非结构化视频的能力,抖音在数据挖掘上沉淀的能力,正好跟自动驾驶行业相匹配。

只有形成商业闭环,Robotaxi才可走下去

在海量数据 + 人工智能算法的基础上,自动驾驶逐渐由梦想变成现实。在国内,多家公司的Robotaxi产品都已上路测试,成为高阶自动驾驶领域关注的焦点。

据火山引擎的张路观察,一些公司前些年十分激进,直接在走L4级自动驾驶的道路,但在商业上无法实现闭环。一些以往做Robotaxi的公司,一直在降级,为了生存不得不去接一些L2、L2+的项目,用这些项目的资金流养活自己。从这些现象可以看出,Robotaxi的路,奇点还没有到。其实,行业其实已经达成共识,通向自动驾驶之路,一定是渐进式的,跳跃式已被论证不可商业化。

焱融的马志刚说,Robotaxi当下的困境,实际引出了另外一个话题,就是乘用车的自动驾驶、商用车的自动哪一个更容易实现。从数据管理的角度看,在干线物流、矿山、港口、园区这些商用场景更容易实现L3、L4级别的自动驾驶。与商用场景相比,乘用车在数据类型、算法上不同,又受到法律法规的限制,一般都在L2级这个水平,正在向L3级发起冲击。

在利氪的文亮看来,自动驾驶必须在某一规则、某一框架、某一场景下才能够实现,Robotaxi是自动驾驶一个运输工具类场景,未来肯定可以落地。当然,作为一个新生事物,商业闭环是一个必须考虑的问题。如果Robotaxi通过技术进步、车路协同,可以解决商业闭环的问题,一定可以走下去。

文亮说,利氪科技主要做线控底盘,首先切入的产品是线控制动。Robotaxi上没有驾驶员,对于安全、冗余、可靠,要求十分高。利氪科技的线控制动产品完全可以满足相关安全、冗余的要求。

走向自动驾驶,汽车芯片是一个短板

谈及自动驾驶,芯片是一个绕不开的话题。长期以来,国内汽车芯片市场由国外大厂主导,国产芯片公司刚刚起步,生存状况艰难。

在利氪的文亮看来,这三年来国内汽车行业一直面临缺芯的问题,国产化替代是芯片的发展趋势。一个芯片是否安全可靠,需要大量的数据、大量的使用方可验证。

焱融的马志刚充分认同文亮的观点。在他看来,芯片是自动驾驶的载体,汽车行业缺芯是一个严峻的问题。就整个自动驾驶产业链而言,有一个木桶效应,芯片便是一个短板,必须要加以解决。要解决缺芯问题,只能对外促成合作,向内谋求自身发力,实现国产化替代。

在火山引擎的张路看来,芯片国产化是一个国家战略,目标就是要做到战略可控。一个好消息是,地平线、黑芝麻智能这些国产芯片早已突围而出,至少在AI芯片方面能有一席之地。在MCU、域控制器方面,国产化的比例也越来越高。芯片国产化的路虽然很艰辛,但这的确是一个行业趋势。

a925146c94973c1f0f24ed14fcfc0db6.jpeg

张路认为,国产化芯片依旧缺乏一个产业链生态。一个芯片研发出来,必须要有驱动程序、软件、系统方面的配套,必须有主机厂去使用,才有可能生存。这其实是一个巨大的挑战。

未来出行,城市大脑实现统一调度

在大算力、大数据、大模型的推动下,全面自动驾驶的时代一定会来临。以始为终地展望,未来的出行市场会出现怎样的形态?

火山引擎的张路认为,在全自动驾驶时代来临之后,汽车可能演变为一个出行服务。要实现这一路径,一定会出现大的运营类的公司去承载这些业务,慢慢形成寡头。自动驾驶与智慧城市结合,一定会产生一个城市大脑,实现交通网的统一调度。

利氪的文亮则认为,即便全自动驾驶时代来临,依旧会分不同的情景、不同的需求。消费者有的情况下需要全无人驾驶,有的情况下则想要体验驾驶的乐趣,人机共驾,也有许多需求。

焱融的马志刚说,如果L5级的全自动驾驶落地,一定会出现类似公共交通的大集中统一协调。当然,在不同的场景下,人有不同的需求,有的场景下需要需要全自动驾驶,有的场景下则需求人工智能辅助驾驶。所以,未来的交通形态一定是综合式解决,既有公共交通全部集中化管理的一面,又有一部分个性化需求得以满足。为了达成这一目标,需要所有上下游的参与者都去发力,才可能实现。

文:Bugle-X / 数据猿

e153e708185f8d4c02b07fea00358315.jpeg

6d2238ea21dc8f51a6a8f81c1eadd0d6.png

9d0432a1cf6afb1a55488aa4e5b94b0c.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/42538.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java面试强基(16)

目录 clone方法的保护机制 Java中由SubString方法是否会引起内存泄漏? Java中提供了哪两种用于多态的机制? 程序计数器(线程私有) 如何判断对象是否是垃圾? clone方法的保护机制 clone0方法的保护机制在Object中是被声明为 protected的。以User…

1000元到3000元预算的阿里云服务器配置大全

1000元、2000元或3000元预算能够买的阿里云服务器配置有哪些?可以选择ECS通用算力型u1云服务器、ECS计算型c7或通用型g7实例规格,当然,如果选择轻量应用服务器的话,更省钱,阿里云百科分享1000-3000元预算能买的阿里云服…

三、Dubbo 注册中心

三、Dubbo 注册中心 3.1 注册中心概述 主要作用 动态加入:服务提供者通过注册中心动态地把自己暴露给其他消费者动态发现:消费者动态地感知新的配置、路由规则和新的服务提供者动态调整:注册中心支持参数的动态调整,新参数自动更…

如何用轻叶H5制作一份调查问卷

在营销落地页中,问卷类H5是一种制作简单,易于传播的落地页,通过精巧的设计和严密的逻辑设置,问卷类H5的投放效果也是不容小觑的。 问卷类H5在制作中有以下不可缺少的要素: 清晰的标题和简要的说明 标题应该简明扼要地…

用pytorch实现AlexNet

AlexNet经典网络由Alex Krizhevsky、Hinton等人在2012年提出,发表在NIPS,论文名为《ImageNet Classification with Deep Convolutional Neural Networks》,论文见:http://www.cs.toronto.edu/~hinton/absps/imagenet.pdf &#xf…

【观察者设计模式详解】C/Java/JS/Go/Python/TS不同语言实现

简介 观察者模式(Observer Pattern)是一种行为型模式。它定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。 观察者模式使用三个类Subject、Observer和Client。Subject…

策略梯度方法

策略梯度方法 数学背景 给定一个标量函数 J ( θ ) J\left(\theta\right) J(θ),利用梯度上升法,使其最大化,此时的 π θ \pi_\theta πθ​就是最优策略。 θ t 1 θ t α ∇ θ J ( θ t ) \theta_{t1}\theta_t\alpha \nabla_\theta…

Element Plus el-table 数据为空时自定义内容【默认为 No Data】

1. 通过 Table 属性设置 <div class"el-plus-table"><el-table empty-text"暂无数据" :data"tableData" style"width: 100%"><el-table-column prop"date" label"Date" width"180" /&g…

移动通信系统的LMS自适应波束成形技术matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ..................................................................... idxx0; while idxx&…

Spring Bean的生命周期总结(包含面试题)

目录 一、Bean的初始化过程 1. 加载Spring Bean 2. 解析Bean的定义 3. Bean属性定义 4. BeanFactoryPostProcessor 扩展接口 5. 实例化Bean对象 6. Aware感知 7. 初始化方法 8. 后置处理 9. destroy 销毁 二、Bean的单例与多例模式 2.1 单例模式&#xff08;Sin…

大数据平台中元数据库—MySQL的异常故障解决

本文的主要目标是解决大数据平台中元数据库MySQL的异常故障。通过分析应用响应缓慢的问题&#xff0c;找到了集群组件HIVE和元数据库MySQL的原因。通过日志分析、工具检测和专家指导等一系列方法&#xff0c; 最终确定问题的根源是大数据集群中租户的不规范使用所导致&#xff…

Linux学习之iptables过滤规则的使用

cat /etc/redhat-release看到操作系统是CentOS Linux release 7.6.1810&#xff0c;uname -r看到内核版本是3.10.0-957.el7.x86_64&#xff0c;iptables --version可以看到iptables版本是v1.4.21。 iptables -t filter -A INPUT -s 10.0.0.8 -j ACCEPT会在最后一行插入。 10…

04 qt功能类、对话框类和文件操作

一 QT中时间和日期 时间 ---- QTime日期 ---- QDate对于Qt而言,在实际的开发过程中, 1)开发者可能知道所要使用的类 ---- >帮助手册 —>索引 -->直接输入类名进行查找 2)开发者可能不知道所要使用的类,只知道开发需求文档 ----> 帮助 手册,按下图操作: 1 …

WordPress更换域名后-后台无法进入,网站模版错乱,css失效,网页中图片不显示。完整解决方案(含宝塔设置)

我在实际解决问题时用到了 【简单暴力解决方案】的《方法一&#xff1a;修改wp-config.php》 和 【简单暴力-且特别粗暴-的解决方案】 更换域名时经常遇到的几个问题&#xff1a; 1、更换域名后&#xff0c;后台无法进入 2、更换域名后&#xff0c;网站模版错乱&#xff0c;c…

音视频FAQ(一):视频直播卡顿

一、摘要 本文介绍了视频直播卡顿的四个主要原因&#xff0c;用户网络问题、用户设备性能问题、技术路线的选择和实现问题。因本文主要阐述视频直播的卡顿&#xff0c;故技术路线的实现指的是&#xff1a;CDN供应商的实现问题&#xff0c;包含CDN性能不足、CDN地区覆盖不足。对…

Vc - Qt - 绘制窗口背景色

要在Qt中绘制一个背景颜色&#xff0c;你可以使用Qt的绘图功能来完成。下面是一种简单的方法&#xff1a; 步骤1&#xff1a;在你想要绘制背景颜色的QWidget&#xff08;例如QMainWindow或QDialog&#xff09;的派生类中&#xff0c;重写 它的paintEvent函数。步骤2&#xff1a…

matlab中exp和expm的区别

exp()为数组 X 中的每个元素返回指数 e x e^{x} ex expm()计算 X 的矩阵指数。 两个函数传入矩阵后计算的结果是不同的&#xff0c;千万不能混淆。之前曾经想当然得把exp里传入矩阵当矩阵指数使用&#xff0c;也未验证正确性&#xff0c;实不应该。

uni-app中使用pinia

目录 Pinia 是什么&#xff1f; uni-app 使用Pinia main.js 中引用pinia 创建和注册模块 定义pinia方式 选项options方式 定义pinia 页面中使用 pinia选项options方式 函数方式 定义pinia 页面中使用 函数方式 定义的pinia Pinia 是什么&#xff1f; Pinia&#xff0…

用户新增预测——baseline学习笔记

一、赛题理解 1. 赛题名称 用户新增预测挑战赛 2. 赛题数据集 赛题数据由约62万条训练集、20万条测试集数据组成&#xff0c;共包含13个字段。其中uuid为样本唯一标识&#xff0c;eid为访问行为ID&#xff0c;udmap为行为属性&#xff0c;其中的key1到key9表示不同的行为属性…