GROUPING SETS
该关键字可以实现同一数据集的多重group by操作。事实上GROUPING SETS是多个GROUP BY进行UNION ALL操作的简单表达,它仅仅使用一个stage完成这些操作。GROUPING SETS的子句中如果包含()数据集,则表示整体聚合。
Aggregate Query with GROUPING SETS | Equivalent Aggregate Query with GROUP BY |
---|---|
SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b GROUPING SETS ( (a, b), a, b, ( ) ) | SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b
SELECT a, null, SUM( c ) FROM tab1 GROUP BY a, null
SELECT null, b, SUM( c ) FROM tab1 GROUP BY null, b
SELECT null, null, SUM( c ) FROM tab1 |
SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b GROUPING SETS ( (a,b), a) | SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b
SELECT a, null, SUM( c ) FROM tab1 GROUP BY a |
SELECT a, b, SUM(c) FROM tab1 GROUP BY a, b GROUPING SETS ( (a,b) ) | SELECT a, b, SUM(c) FROM tab1 GROUP BY a, b |
SELECT a,b, SUM( c ) FROM tab1 GROUP BY a, b GROUPING SETS (a,b) | SELECT a, null, SUM( c ) FROM tab1 GROUP BY a
SELECT null, b, SUM( c ) FROM tab1 GROUP BY b |
ROLLUP
扩展了GROUTING SETS。
其中count(d) 可以换成其他聚合函数例如:sum(d)
select a, b, c, count(d) from table group by a, b, c WITH ROLLUP;
// 等价于下面语句
select a, b, c from table group by a, b, c
GROUPING SETS((a,b,c),(a,b),(a),());
CUBE
扩展了GROUTING SETS,对各种条件进行聚合。
其中count(d) 可以换成其他聚合函数例如:sum(d)
select a, b, c,count(d) from table group by a, b, c WITH ROLLUP;
// 等价于下面语句
select a, b, c from table group by a, b, c
GROUPING SETS((a,b,c),(a,b),(a,c),(b,c),(a),(b),(c),());
聚合条件 HAVING
having用于在组内进行过滤。
select cid,max(price) mx from orders group by cid having mx > 1000;
//等价于下面的子查询语句
select t.cid, t.mx from (select cid, max(price) mx from orders group by cid) t
where t.mx > 1000;
Cubes and Rollups
The general syntax is WITH CUBE/ROLLUP. It is used with the GROUP BY only. CUBE creates a subtotal of all possible combinations of the set of column in its argument. Once we compute a CUBE on a set of dimension, we can get answer to all possible aggregation questions on those dimensions.It might be also worth mentioning here that
GROUP BY a, b, c WITH CUBE is equivalent to
GROUP BY a, b, c GROUPING SETS ( (a, b, c), (a, b), (b, c), (a, c), (a), (b), (c), ( )).ROLLUP clause is used with GROUP BY to compute the aggregate at the hierarchy levels of a dimension.
GROUP BY a, b, c with ROLLUP assumes that the hierarchy is "a" drilling down to "b" drilling down to "c".GROUP BY a, b, c, WITH ROLLUP is equivalent to GROUP BY a, b, c GROUPING SETS ( (a, b, c), (a, b), (a), ( )).
实例:
转载地址:
Hive分析窗口函数(五) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP
GROUPING SETS,GROUPING__ID,CUBE,ROLLUP
这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。
Hive版本为 apache-hive-0.13.1
数据准备:
2015-03,2015-03-10,cookie12015-03,2015-03-10,cookie52015-03,2015-03-12,cookie72015-04,2015-04-12,cookie32015-04,2015-04-13,cookie22015-04,2015-04-13,cookie42015-04,2015-04-16,cookie42015-03,2015-03-10,cookie22015-03,2015-03-10,cookie32015-04,2015-04-12,cookie52015-04,2015-04-13,cookie62015-04,2015-04-15,cookie32015-04,2015-04-15,cookie22015-04,2015-04-16,cookie1CREATE EXTERNAL TABLE lxw1234 (month STRING,day STRING, cookieid STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' stored as textfile location '/tmp/lxw11/';hive> select * from lxw1234;OK2015-03 2015-03-10 cookie12015-03 2015-03-10 cookie52015-03 2015-03-12 cookie72015-04 2015-04-12 cookie32015-04 2015-04-13 cookie22015-04 2015-04-13 cookie42015-04 2015-04-16 cookie42015-03 2015-03-10 cookie22015-03 2015-03-10 cookie32015-04 2015-04-12 cookie52015-04 2015-04-13 cookie62015-04 2015-04-15 cookie32015-04 2015-04-15 cookie22015-04 2015-04-16 cookie1
GROUPING SETS
在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,GROUPING__ID FROM lxw1234 GROUP BY month,day GROUPING SETS (month,day) ORDER BY GROUPING__ID;month day uv GROUPING__ID------------------------------------------------2015-03 NULL 5 12015-04 NULL 6 1NULL 2015-03-10 4 2NULL 2015-03-12 1 2NULL 2015-04-12 2 2NULL 2015-04-13 3 2NULL 2015-04-15 2 2NULL 2015-04-16 2 2等价于 SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month UNION ALL SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
再如:
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,GROUPING__ID FROM lxw1234 GROUP BY month,day GROUPING SETS (month,day,(month,day)) ORDER BY GROUPING__ID;month day uv GROUPING__ID------------------------------------------------2015-03 NULL 5 12015-04 NULL 6 1NULL 2015-03-10 4 2NULL 2015-03-12 1 2NULL 2015-04-12 2 2NULL 2015-04-13 3 2NULL 2015-04-15 2 2NULL 2015-04-16 2 22015-03 2015-03-10 4 32015-03 2015-03-12 1 32015-04 2015-04-12 2 32015-04 2015-04-13 3 32015-04 2015-04-15 2 32015-04 2015-04-16 2 3等价于SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month UNION ALL SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY dayUNION ALL SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day
其中的 GROUPING__ID,表示结果属于哪一个分组集合。
CUBE
根据GROUP BY的维度的所有组合进行聚合。
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,GROUPING__ID FROM lxw1234 GROUP BY month,day WITH CUBE ORDER BY GROUPING__ID;month day uv GROUPING__ID--------------------------------------------NULL NULL 7 02015-03 NULL 5 12015-04 NULL 6 1NULL 2015-04-12 2 2NULL 2015-04-13 3 2NULL 2015-04-15 2 2NULL 2015-04-16 2 2NULL 2015-03-10 4 2NULL 2015-03-12 1 22015-03 2015-03-10 4 32015-03 2015-03-12 1 32015-04 2015-04-16 2 32015-04 2015-04-12 2 32015-04 2015-04-13 3 32015-04 2015-04-15 2 3等价于SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM lxw1234UNION ALL SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month UNION ALL SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY dayUNION ALL SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day
ROLLUP
是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。
比如,以month维度进行层级聚合:SELECT month,day,COUNT(DISTINCT cookieid) AS uv,GROUPING__ID FROM lxw1234 GROUP BY month,dayWITH ROLLUP ORDER BY GROUPING__ID;month day uv GROUPING__ID---------------------------------------------------NULL NULL 7 02015-03 NULL 5 12015-04 NULL 6 12015-03 2015-03-10 4 32015-03 2015-03-12 1 32015-04 2015-04-12 2 32015-04 2015-04-13 3 32015-04 2015-04-15 2 32015-04 2015-04-16 2 3可以实现这样的上钻过程:月天的UV->月的UV->总UV
--把month和day调换顺序,则以day维度进行层级聚合:SELECT day,month,COUNT(DISTINCT cookieid) AS uv,GROUPING__ID FROM lxw1234 GROUP BY day,month WITH ROLLUP ORDER BY GROUPING__ID;day month uv GROUPING__ID-------------------------------------------------------NULL NULL 7 02015-04-13 NULL 3 12015-03-12 NULL 1 12015-04-15 NULL 2 12015-03-10 NULL 4 12015-04-16 NULL 2 12015-04-12 NULL 2 12015-04-12 2015-04 2 32015-03-10 2015-03 4 32015-03-12 2015-03 1 32015-04-13 2015-04 3 32015-04-15 2015-04 2 32015-04-16 2015-04 2 3可以实现这样的上钻过程:天月的UV->天的UV->总UV(这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)
Grouping_ID函数
当我们没有统计某一列时,它的值显示为null,这可能与列本身就有null值冲突,这就需要一种方法区分是没有统计还是值本来就是null。(写一个排列组合的算法,就马上理解了,grouping_id其实就是所统计各列二进制和)
直接拿官方文档一个例子,O(∩_∩)O哈哈~
Column1 (key) | Column2 (value) |
---|---|
1 | NULL |
1 | 1 |
2 | 2 |
3 | 3 |
3 | NULL |
4 | 5 |
hql统计:
SELECT key, value, GROUPING__ID, count(*) from T1 GROUP BY key, value WITH ROLLUP
统计结果如下:
NULL | NULL | 0 00 | 6 |
1 | NULL | 1 10 | 2 |
1 | NULL | 3 11 | 1 |
1 | 1 | 3 11 | 1 |
2 | NULL | 1 10 | 1 |
2 | 2 | 3 11 | 1 |
3 | NULL | 1 10 | 2 |
3 | NULL | 3 11 | 1 |
3 | 3 | 3 11 | 1 |
4 | NULL | 1 10 | 1 |
4 | 5 | 3 11 | 1 |
GROUPING__ID转变为二进制,如果对应位上有值为null,说明这列本身值就是null。(通过类DataFilterNull.py 扫描,可以筛选过滤掉列中null、“”统计结果),
总结
cube的分组组合最全,是各个维度值的笛卡尔(包含null)组合,
rollup的各维度组合应满足,前一维度为null后一位维度必须为null,前一维度取非null时,下一维度随意,
grouping sets则为自定义维度,根据需要分组即可。
ps:通过grouping sets的使用可以简化SQL,比group by单维度进行union性能更好。
这种函数,需要结合实际场景和数据去使用和研究,只看说明的话,很难理解。
官网的介绍: https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation%2C+Cube%2C+Grouping+and+Rollup
转发:https://www.2cto.com/database/201708/671294.html
转发:https://blog.csdn.net/zhoudetiankong/article/details/52527142
参考:https://blog.csdn.net/suiyingli39/article/details/53540861
参考:https://blog.csdn.net/moon_yang_bj/article/details/17200367
依据上面两篇博客以及官网,整理