时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测

时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测

目录

    • 时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 学习总结
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。
1.MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测;
2.单变量时间序列预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.鲸鱼算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

模型描述

鲸鱼算法(Whale Optimization Algorithm,WOA)是一种基于自然界中鲸鱼群体行为的优化算法,可以用于解决优化问题。而卷积长短期记忆神经网络(CNN-LSTM)是一种结合了卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的网络结构,能够处理序列数据和空间数据。多输入单输出回归预测是指输入多个特征,输出一个数值的回归问题。
下面是使用鲸鱼算法优化CNN-LSTM网络进行多输入单输出回归预测的步骤:
首先,需要确定网络的结构,包括卷积层、LSTM层、全连接层等。
然后,需要定义适应度函数,即网络在训练集上的预测误差。这里可以选择均方误根差(RMSE)作为适应度函数。
接下来,可以使用鲸鱼算法进行参数优化。具体来说,可以将CNN-LSTM网络的参数作为优化变量,将适应度函数作为目标函数,使用鲸鱼算法进行迭代优化,直到目标函数收敛或达到预设的迭代次数。
在优化过程中,需要设置好鲸鱼算法的参数,包括优化正则化率、学习率、隐藏层单元数等。
最后,可以使用优化后的CNN-LSTM网络进行多输入单输出回归预测。
需要注意的是,鲸鱼算法虽然可以用于优化神经网络,但并不是万能的,也存在局限性。在使用鲸鱼算法进行优化时,需要根据具体问题进行调参和优化,以获得更好的优化效果。

程序设计

  • 完整源码和数据获取方式1:私信博主回复WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测,同等价值程序兑换;
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测,专栏外只能获取该程序。
%%  获取最优种群for j = 1 : SearchAgentsif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j, :);endend%%  更新种群和适应度值pop_new = X_new;fitness = fitness_new;%%  更新种群 [fitness, index] = sort(fitness);for j = 1 : SearchAgentspop_new(j, :) = pop_new(index(j), :);end%%  得到优化曲线curve(i) = GBestF;avcurve(i) = sum(curve) / length(curve);
end%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam'MaxEpochs', 20, ...                              % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', InitialLearnRate, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', L2Regularization, ...         % 正则化参数'ExecutionEnvironment', 'gpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'SequenceLength',1,...'MiniBatchSize',10,...'Plots', 'training-progress');                    % 画出曲线

学习总结

该算法的流程如下:
数据预处理。将输入数据进行预处理,如将牌型数据转化为数字、进行归一化、缺失值填充等操作。卷积网络。对输入数据进行卷积神经网络(CNN)处理,提取其特征表示。LSTM网络。将卷积网络提取的特征序列输入长短期记忆神经网络(LSTM),将其转化为单一输出。输出LSTM网络的预测结果。
在该算法中,卷积网络用于提取输入数据的特征,LSTM网络将卷积网络提取的特征序列转化为单一输出,并保留其时间序列信息,从而能够更好地预测未来的结果。该算法的优化方法主要集中在卷积网络和LSTM网络两个阶段:卷积网络优化。可以通过增加卷积网络的深度和宽度,增加其表达能力,提高对输入序列的特征提取能力。同时,可以采用更好的激活函数和正则化方法,如ReLU和Dropout,以增加网络的非线性能力和泛化能力。
LSTM网络优化。可以通过增加LSTM网络的隐藏层大小和层数,增加其表达能力和记忆能力,提高对输入序列的建模能力。同时,可以采用更好的门控机制和梯度裁剪方法,如LSTM和Clip Gradient,以增加网络的稳定性和泛化能力。
总之,通过卷积神经网络和长短期记忆神经网络的结合,可以对多输入单输出的回归预测任务进行建模和预测。其优化方法主要包括调整模型结构、优化损失函数和优化算法、融合多个数据源、增加数据预处理和增强、调整模型超参数等。通过这些优化方法,可以提高模型的预测性能和泛化能力,适应更广泛的应用场景。

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/42337.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

R语言APSIM模型进阶应用与参数优化、批量模拟实践技术

随着数字农业和智慧农业的发展&#xff0c;基于过程的农业生产系统模型在模拟作物对气候变化的响应与适应、农田管理优化、作物品种和株型筛选、农田固碳和温室气体排放等领域扮演着越来越重要的作用。APSIM (Agricultural Production Systems sIMulator)模型是世界知名的作物生…

《论文阅读14》FAST-LIO

一、论文 研究领域&#xff1a;激光雷达惯性测距框架论文&#xff1a;FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter IEEE Robotics and Automation Letters, 2021 香港大学火星实验室 论文链接论文github 二、论文概…

LeetCode49.字母异味词分组

我一开始的思路就是用1个hashmap<Integer,List<String>>,Integer存的的是字符串所有字母ASCLL值的和&#xff0c;List里面放异位字符串&#xff0c;但是不是异位的字符串的ascll值也可能相同比如acd和abe&#xff0c;所以这个hashmap只能降低一点时间复杂度我还是要…

Vue--》打造个性化医疗服务的医院预约系统(六)

今天开始使用 vue3 + ts 搭建一个医院预约系统的前台页面,因为文章会将项目的每一个地方代码的书写都会讲解到,所以本项目会分成好几篇文章进行讲解,我会在最后一篇文章中会将项目代码开源到我的GithHub上,大家可以自行去进行下载运行,希望本文章对有帮助的朋友们能多多关…

Web APIs 第六天

正则表达式介绍语法元字符修饰符 一.正则表达式介绍 ① 简介 用来匹配字符串中字符组合的模式在JavaScript中&#xff0c;正则表达式也是对象通常用来查找&#xff0c;替换那些符合正则表达式的文本&#xff0c;许多语言都支持正则表达式 ② 使用场景 验证表单&#xff1a…

算法通关村第4关【白银】| 栈的经典算法问题

1.括号匹配问题 思路&#xff1a;将左括号压入栈中&#xff0c;遍历字符串&#xff0c;当遇到右括号就出栈&#xff0c;判断是否是匹配的一对&#xff0c;不是就返回false&#xff08;因为按照顺序所以当遇到右括号出栈一定要是匹配的&#xff09;。使用Map来简化ifelse clas…

问道管理:放量打拐什么意思?常见的放量打拐三种形态?

成交量一直是股票交易中比较重要的目标&#xff0c;那么&#xff0c;放量打拐是什么意思&#xff1f;常见的放量打拐三种形状是什么&#xff1f;下面问道管理为我们预备了相关内容&#xff0c;以供参阅。 放量打拐什么意思&#xff1f; 放量是指股票成交量与前几个交易日比较显…

安装和配置 Ansible

安装和配置 Ansible 按照下方所述&#xff0c;在控制节点 control.area12.example.com 上安装和配置 Ansible&#xff1a; 安装所需的软件包 创建名为 /home/curtis/ansible/inventory 的静态清单文件&#xff0c;以满足以下要求&#xff1a; node1 是 dev 主机组的成员 node2 …

openGauss学习笔记-43 openGauss 高级数据管理-事件触发器

文章目录 openGauss学习笔记-43 openGauss 高级数据管理-事件触发器43.1 语法格式43.2 参数说明43.3 示例 openGauss学习笔记-43 openGauss 高级数据管理-事件触发器 触发器会在指定的ddl事件发生时自动执行函数。目前事件触发器仅在PG兼容模式下可用。 43.1 语法格式 创建事…

独家!网络机顶盒哪个好?测评员深度对比盘点网络机顶盒排名

网络机顶盒称得上是家家户户必备&#xff0c;每年我都会进行网络机顶盒的测评&#xff0c;今年已经测评过十几款了&#xff0c;后台收到很多私信不知道网络机顶盒哪个好&#xff0c;我本期整理了网络机顶盒排名&#xff0c;大家在选购时可以参考&#xff1a; ◆泰捷WEBOX 60Pro…

Keepalived + Nginx 实现高可用

一、简介 浮动IP、漂移IP地址又叫做VIP&#xff0c;也就是虚拟IP。 Keepalived 是一种高性能的服务器高可用或热备解决方案。 Keepalived 可以用来防止服务器单点故障的发生&#xff0c;通过配合 Nginx 可以实现 web 前端服务的高可用。 Keepalived 以 VRRP 协议为实现基础&a…

【C++】模板template

&#x1f525;&#x1f525; 欢迎来到小林的博客&#xff01;&#xff01;       &#x1f6f0;️博客主页&#xff1a;✈️林 子       &#x1f6f0;️博客专栏&#xff1a;✈️ C       &#x1f6f0;️社区 :✈️ 进步学堂       &#x1f6f0;️欢…

Django之定时任务--apscheduler

Django--定时任务apscheduler的使用 apscheduler定时任务的使用1、安装包2、配置settings.py3、在manage.py的文件同级目录下创建文件scheduler.py4、在项目的urls.py中调用这个定时计划5、然后启动项目 python manage.py runserver,在admin中查看就能看到你的定时任务及执行的…

机器学习算法之-逻辑回归(1)

什么是回归 回归树&#xff0c;随机森林的回归&#xff0c;无一例外他们都是区别于分类算法们&#xff0c;用来处理和预测连续型标签的算法。然而逻辑回归&#xff0c;是一种名为“回归”的线性分类器&#xff0c;其本质是由线性回归变化而来的&#xff0c;一种广泛使用于分类问…

Vue 引入 Element-UI 组件库

Element-UI 官网地址&#xff1a;https://element.eleme.cn/#/zh-CN 完整引入&#xff1a;会将全部组件打包到项目中&#xff0c;导致项目过大&#xff0c;首次加载时间过长。 下载 Element-UI 一、打开项目&#xff0c;安装 Element-UI 组件库。 使用命令&#xff1a; npm …

ArcGIS Maps SDK for JavaScript系列之二:认识Map和MapView

目录 Map创建一个 Map 对象的示例代码&#xff1a;Map的常用属性Map的常用方法 MapViewMapView的常用属性MapView的常用方法 在 ArcGIS Maps SDK for JavaScript 中&#xff0c;Map 和 MapView 是两个重要的概念&#xff0c;用于创建和展示地图应用程序。 Map Map 表示一个地图…

【Rust】Rust学习 第十三章Rust 中的函数式语言功能:迭代器与闭包

Rust 的设计灵感来源于很多现存的语言和技术。其中一个显著的影响就是 函数式编程&#xff08;functional programming&#xff09;。函数式编程风格通常包含将函数作为参数值或其他函数的返回值、将函数赋值给变量以供之后执行等等。 更具体的&#xff0c;我们将要涉及&#…

bert,transformer架构图及面试题

Transformer详解 - mathor atten之后经过一个全连接层残差层归一化 class BertSelfOutput(nn.Module):def __init__(self, config):super().__init__()self.dense nn.Linear(config.hidden_size, config.hidden_size)self.LayerNorm nn.LayerNorm(config.hidden_size, epscon…

redis 发布和订阅

目录 一、简介 二、常用命令 三、示例 一、简介 Redis 发布订阅 (pub/sub) 是一种消息通信模式&#xff1a;发送者 (pub) 发送消息&#xff0c;订阅者 (sub) 接收消息。Redis 客户端可以订阅任意数量的频道。下图展示了频道 channel1 &#xff0c;以及订阅这个频道的三个客户…

前端对文件转换处理的一些常用方法

文章目录 0&#xff0c;前言1&#xff0c;将图片的url网络链接(http://) 转为base64格式2&#xff0c;将base64的图片数据转换为file文件3&#xff0c;将以base64的图片数据转换为Blob4&#xff0c;将file文件转化为base645&#xff0c;将file文件转换为Blob6&#xff0c;获取文…