数据结构:选择排序

简单选择排序

选择排序是一种简单直观的排序算法。首先在未排序序列中找到最大(最小)的元素,存放到排序学列的其实位置,然后在剩余的未排序的元素中寻找最小(最大)元素,存放在已排序序列的后面

算法步骤

  1. 在未排序序列中找到最大(小)元素,存放在排序序列的起始位置
  2. 再从剩余的未排序序列中找到最大(小)元素,然后存放在已排序序列的后面
  3. 重复上诉第二步骤,直至排序结束

算法理解

例如对无序表{56,12,80,91,20}采用简单选择排序算法进行排序,具体过程为:

  • 第一次遍历时,从下标为 1 的位置即 56 开始,找出关键字值最小的记录 12,同下标为 0 的关键字 56 交换位置:

    在这里插入图片描述

  • 第二次遍历时,从下标为 2 的位置即 56 开始,找出最小值 20,同下标为 2 的关键字 56 互换位置:

    在这里插入图片描述

  • 第三次遍历时,从下标为 3 的位置即 80 开始,找出最小值 56,同下标为 3 的关键字 80 互换位置:

    在这里插入图片描述

  • 第四次遍历时,从下标为 4 的位置即 91 开始,找出最小是 80,同下标为 4 的关键字 91 互换位置:

    在这里插入图片描述

  • 到此简单选择排序算法完成,无序表变为有序表。

代码实现

#include "iostream"
using namespace std;#define MAX 9
//单个记录的结构体
typedef struct {int key;
}SqNote;
//记录表的结构体
typedef struct {SqNote r[MAX];int length;
}SqList;
//交换两个记录的位置
void swap(SqNote *a,SqNote *b){int key=a->key;a->key=b->key;b->key=key;
}
//查找表中关键字的最小值
int SelectMinKey(SqList *L,int i){int min=i;//从下标为 i+1 开始,一直遍历至最后一个关键字,找到最小值所在的位置while (i+1<L->length) {if (L->r[min].key>L->r[i+1].key) {min=i+1;}i++;}return min;
}
//简单选择排序算法实现函数
void SelectSort(SqList * L){for (int i=0; i<L->length; i++) {//查找第 i 的位置所要放置的最小值的位置int j=SelectMinKey(L,i);//如果 j 和 i 不相等,说明最小值不在下标为 i 的位置,需要交换if (i!=j) {swap(&(L->r[i]),&(L->r[j]));}}
}
int main() {SqList *L = new SqList;L->length=8;L->r[0].key=49;L->r[1].key=38;L->r[2].key=65;L->r[3].key=97;L->r[4].key=76;L->r[5].key=13;L->r[6].key=27;L->r[7].key=49;SelectSort(L);for (int i=0; i<L->length; i++) {cout << L->r[i].key << " ";}return 0;
}

代码实现

13 27 38 49 49 65 76 97

树形选择排序

树形选择排序(又称“锦标赛排序”),是一种按照锦标赛的思想进行选择排序的方法,即所有记录采取两两分组,筛选出较小(较大)的值;然后从筛选出的较小(较大)值中再两两分组选出更小(更大)值,依次类推,直到最后选出一个最小(最大)值。同样可以采用此方式筛选出次小(次大)值等

算法理解

整个排序的过程,可以用一棵具有 n 个叶子结点的完全二叉树表示。例如对无序表{49,38,65,97,76,13,27,49}采用树形选择的方式排序,过程如下:

  • 首先将无序表中的记录采用两两分组,筛选出各组中的较小值(如图 1 中的(a)过程);然后将筛选出的较小值两两分组,筛选出更小的值,以此类推(如图 1 中的(b)(c)过程),最终整棵树的根结点中的关键字即为最小关键字:

在这里插入图片描述

图 1 树形选择排序(一)

  • 筛选出关键字 13 之后,继续重复此方式找到剩余记录中的最小值,此时由于关键字 13 已经筛选完成,需要将关键字 13 改为“最大值”,继续重复此过程,如图 2 所示: 图 2 树形选择排序(二)

    在这里插入图片描述

通过不断地重复此过程,可依次筛选出从小到大的所有关键字。该算法的时间复杂度为O(nlogn),同简单选择排序相比,该算法减少了不同记录之间的比较次数,但是程序运行所需要的空间较多。

代码实现

#include "iostream"
using namespace std;
#define N 8
void TreeSelectionSort(int *mData)
{int MinValue = 0;int tree[N * 4]; // 树的大小int max, maxIndex, treeSize;int i, n = N, baseSize = 1;while (baseSize < n)baseSize *= 2;treeSize = baseSize * 2 - 1;for (i = 0; i < n; i++) {//将要排的数字填到树上tree[treeSize - i] = mData[i];}for (; i < baseSize; i++) {//其余的地方都填上最小值tree[treeSize - i] = MinValue;}// 构造一棵树,大的值向上构造for (i = treeSize; i > 1; i -= 2){tree[i / 2] = (tree[i] > tree[i - 1] ? tree[i] : tree[i - 1]);}n -= 1;while (n != -1){max = tree[1];        //树顶为最大值mData[n--] = max;     //从大到小倒着贴到原数组上maxIndex = treeSize;  //最大值下标while (tree[maxIndex] != max) {maxIndex--;}//找最大值下标tree[maxIndex] = MinValue;while (maxIndex > 1) {if (maxIndex % 2 == 0) {tree[maxIndex / 2] = (tree[maxIndex] > tree[maxIndex + 1] ? tree[maxIndex] : tree[maxIndex + 1]);}else {tree[maxIndex / 2] = (tree[maxIndex] > tree[maxIndex - 1] ? tree[maxIndex] : tree[maxIndex - 1]);}maxIndex /= 2;}}
}
int main()
{int a[N] = {49,38,65,97,76,13,27,49};TreeSelectionSort(a);for (int i = 0; i < N; i++) {cout << a[i] << " ";}return 0;
}

运行结果

13 27 38 49 49 65 76 97

堆排序

堆排序 ( H e a p s o r t ) (Heapsort) (Heapsort)是指利用堆来实现的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。堆排序的平均时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)。分为两种方法:

  1. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;
  2. 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

在这里插入图片描述

算法思想

了解了堆的基本性质之后,我们就可以看堆排序的基本思想。

  1. 将未排序的序列构造成大(或者小)顶堆,根据堆的性质我们可以找到序列中的最大(或者最小)值
  2. 把堆首和堆尾互换,并把堆的大小减 1 1 1
  3. 重复上面的步骤,直到堆的大小为 1 1 1

在这里插入图片描述

在这里插入图片描述

代码实现

#include "iostream"
using namespace std;
#define MAX 9
//单个记录的结构体
typedef struct {int key;
}SqNote;
//记录表的结构体
typedef struct {SqNote r[MAX];int length;
}SqList;
//将以 r[s]为根结点的子树构成堆,堆中每个根结点的值都比其孩子结点的值大
void HeapAdjust(SqList * H,int s,int m){SqNote rc=H->r[s];//先对操作位置上的结点数据进行保存,放置后序移动元素丢失。//对于第 s 个结点,筛选一直到叶子结点结束for (int j=2*s; j<=m; j*=2) {//找到值最大的孩子结点if (j+1<m && (H->r[j].key<H->r[j+1].key)) {j++;}//如果当前结点比最大的孩子结点的值还大,则不需要对此结点进行筛选,直接略过if (!(rc.key<H->r[j].key)) {break;}//如果当前结点的值比孩子结点中最大的值小,则将最大的值移至该结点,由于 rc 记录着该结点的值,所以该结点的值不会丢失H->r[s]=H->r[j];s=j;//s相当于指针的作用,指向其孩子结点,继续进行筛选}H->r[s]=rc;//最终需将rc的值添加到正确的位置
}
//交换两个记录的位置
void swap(SqNote *a,SqNote *b){int key=a->key;a->key=b->key;b->key=key;
}
void HeapSort(SqList *H){//构建堆的过程for (int i=H->length/2; i>0; i--) {//对于有孩子结点的根结点进行筛选HeapAdjust(H, i, H->length);}//通过不断地筛选出最大值,同时不断地进行筛选剩余元素for (int i=H->length; i>1; i--) {//交换过程,即为将选出的最大值进行保存大表的最后,同时用最后位置上的元素进行替换,为下一次筛选做准备swap(&(H->r[1]), &(H->r[i]));//进行筛选次最大值的工作HeapAdjust(H, 1, i-1);}
}int main() {SqList *L = new SqList ;L->length=8;L->r[1].key=49;L->r[2].key=38;L->r[3].key=65;L->r[4].key=97;L->r[5].key=76;L->r[6].key=13;L->r[7].key=27;L->r[8].key=49;HeapSort(L);for (int i=1; i<=L->length; i++) {cout << L->r[i].key << " ";}return 0;
}

运行结果

13 27 38 49 49 65 76 97

注意:堆排序相对于树形选择排序,其只需要一个用于记录交换(rc)的辅助存储空间,比树形选择排序的运行空间更小。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/42171.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高等数学:牛顿迭代发解方程

现在高数也要介绍牛顿法了&#xff0c;一般都是从几何上直接以“切线法”直接引入的。这种引入方式的确很简单&#xff0c;但如果脱离深入一点的分析就不大容易解释后面的事情。所以就在想怎么更直接地从分析的角度来一条线贯穿&#xff0c;把整个过程说一说。 文章目录 一、牛…

【深度学习】PyTorch快速入门

【深度学习】学习PyTorch基础 介绍PyTorch 深度学习框架是一种软件工具&#xff0c;旨在简化和加速构建、训练和部署深度学习模型的过程。深度学习框架提供了一系列的函数、类和工具&#xff0c;用于定义、优化和执行各种深度神经网络模型。这些框架帮助研究人员和开发人员专注…

漏洞+常见漏洞修复建议

一、漏洞级别 高级别漏洞&#xff1a;大部分远程和本地管理员权限漏洞 中级别漏洞&#xff1a;大部分普通用户权限、权限提升、读懂受限文件、远程和本杜漏洞、拒绝服务漏洞 低级别漏洞&#xff1a;大部分远程非授权文件存取、口令恢复、欺骗、信息泄露漏洞 二、漏洞扫描的…

Kotlin Lambda和高阶函数

Lambda和高阶函数 本文链接&#xff1a; 文章目录 Lambda和高阶函数 lambda输出&#xff08;返回类型&#xff09;深入探究泛型 inline原理探究 高阶函数集合、泛型自己实现Kotlin内置函数 扩展函数原理companion object 原理 > 静态内部类函数式编程 lambda 1、lambda的由…

Flink流批一体计算(13):PyFlink Tabel API之SQL DDL

1. TableEnvironment 创建 TableEnvironment from pyflink.table import Environmentsettings, TableEnvironment# create a streaming TableEnvironmentenv_settings Environmentsettings.in_streaming_mode()table_env TableEnvironment.create(env_settings)# or create…

嵌入式Linux开发实操(九):CAN接口开发

前言: CAN网络在汽车中的使用可以说相当广泛。而CAN网络需要的收发器最常用的就是NXP 的TJA1042: CAN网络:

605. 种花问题

链接 假设有一个很长的花坛&#xff0c;一部分地块种植了花&#xff0c;另一部分却没有。可是&#xff0c;花不能种植在相邻的地块上&#xff0c;它们会争夺水源&#xff0c;两者都会死去。给你一个整数数组 flowerbed 表示花坛&#xff0c;由若干 0 和 1 组成&#xff0c;其中…

8/16总结

WebSocket是双向通信协议&#xff0c;模拟Socket协议&#xff0c;可以双向发送或者接收信息 而Http是单向的 WebSocket是需要浏览器和服务器握手进行建立连接的 而http是浏览器发起向服务器的连接&#xff0c;服务器预先并不知道这个连接 WebSocket在建立握手时&#xff0c;数…

Python3内置函数大全

吐血整理 Python3内置函数大全 1.abs()函数2.all()函数3.any()函数4.ascii()函数5.bin()函数6.bool()函数7.bytes()函数8.challable()函数9.chr()函数10.classmethod()函数11.complex()函数12.complie()函数13.delattr()函数14.dict()函数15.dir()函数16.divmod()函数17.enumer…

注解@JsonInclude

注解JsonInclude 1. 注解由来 JsonInclude是一个用于Java类中字段或方法的注解&#xff0c;它来自于Jackson库。Jackson库是一个用于处理JSON数据的流行开源库&#xff0c;在Java对象和JSON之间进行序列化和反序列化时经常被使用。 2. 注解示例 下面是JsonInclude注解的一个…

【kubernetes】Pod控制器

目录 Pod控制器及其功用 pod控制器有多种类型 1、ReplicaSet ReplicaSet主要三个组件组成 2、Deployment 3、DaemonSet 4、StatefulSet 5、Job 6、Cronjob Pod与控制器之间的关系 1、Deployment 查看控制器配置 查看历史版本 2、SatefulSet 为什么要有headless&…

2023-08-18力扣每日一题

链接&#xff1a; 1388. 3n 块披萨 题意&#xff1a; 一个长度3n的环&#xff0c;选n次数字&#xff0c;每次选完以后相邻的数字会消失&#xff0c;求选取结果最大值 解&#xff1a; 这波是~~&#xff08;ctrl&#xff09;CV工程师了~~ 核心思想是选取n个不相邻的元素一定…

无涯教程-Perl - splice函数

描述 此函数从LENGTH元素的OFFSET元素中删除ARRAY元素,如果指定,则用LIST替换删除的元素。如果省略LENGTH,则从OFFSET开始删除所有内容。 语法 以下是此函数的简单语法- splice ARRAY, OFFSET, LENGTH, LISTsplice ARRAY, OFFSET, LENGTHsplice ARRAY, OFFSET返回值 该函数…

Vue 项目运行 npm install 时,卡在 sill idealTree buildDeps 没有反应

解决方法&#xff1a;切换到淘宝镜像。 以下是之前安装的 xmzs 包&#xff0c;用于控制切换淘宝镜像。 该截图是之前其他项目切换淘宝镜像的截图。 切换镜像后&#xff0c;顺利执行 npm install 。

生成国密密钥对

在线生成国密密钥对 生成的密钥对要妥善保管&#xff0c;丢失是无法找回的。

selinux

一、selinux的说明 二、selinux的工作原理 三、selinux的启动、关闭与查看 Enforcing和permissive都是临时的&#xff0c;重启还是依据配置文件中&#xff0c;禁用selinux&#xff0c;修改配置文件&#xff1a; 之后重启生效 四、selinux对linux服务的影响

SpringBoot 接口调用出现乱码解决 中文乱码

SpringBoot 接口调用出现乱码解决 package com.cxjg.mvc.util;import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.http.converter.HttpMessageConverter; import org.springfra…

相同数字的积木游戏

题目描述 题目描述 小华和小薇一起通过玩积木游戏学习数学。 他们有很多积木&#xff0c;每个积木块上都有一个数字&#xff0c;积木块上的数字可能相同。 小华随机拿一些积木挨着排成一排&#xff0c;请小薇找到这排积木中数字相同目所处位置最远的2块积木块&#xff0c;计算…

【JAVA】我们该如何规避代码中可能出现的错误?(一)

个人主页&#xff1a;【&#x1f60a;个人主页】 系列专栏&#xff1a;【❤️初识JAVA】 文章目录 前言三种类型的异常异常处理JAVA内置异常类Exception 类的层次 前言 异常是程序中的一些错误&#xff0c;但并不是所有的错误都是异常&#xff0c;并且错误有时候是可以避免的&…

【BASH】回顾与知识点梳理(三十三)

【BASH】回顾与知识点梳理 三十三 三十三. 认识系统服务 (daemons)33.1 什么是 daemon 与服务 (service)早期 System V 的 init 管理行为中 daemon 的主要分类 (Optional)systemd 使用的 unit 分类systemd 的配置文件放置目录systemd 的 unit 类型分类说明 33.2 透过 systemctl…