ACM1598并查集方法

find the most comfortable road

Problem Description
XX星有许多城市,城市之间通过一种奇怪的高速公路SARS(Super Air Roam Structure---超级空中漫游结构)进行交流,每条SARS都对行驶在上面的Flycar限制了固定的Speed,同时XX星人对 Flycar的“舒适度”有特殊要求,即乘坐过程中最高速度与最低速度的差越小乘坐越舒服 ,(理解为SARS的限速要求,flycar必须瞬间提速/降速,痛苦呀 ),
但XX星人对时间却没那么多要求。要你找出一条城市间的最舒适的路径。(SARS是双向的)。
Input
输入包括多个测试实例,每个实例包括:
第一行有2个正整数n (1<n<=200)和m (m<=1000),表示有N个城市和M条SARS。
接下来的行是三个正整数StartCity,EndCity,speed,表示从表面上看StartCity到EndCity,限速为speedSARS。speed<=1000000
然后是一个正整数Q(Q<11),表示寻路的个数。
接下来Q行每行有2个正整数Start,End, 表示寻路的起终点。
Output
每个寻路要求打印一行,仅输出一个非负整数表示最佳路线的舒适度最高速与最低速的差。如果起点和终点不能到达,那么输出-1。
Sample Input
4 4
1 2 2
2 3 4
1 4 1
3 4 2
2
1 3
1 2
Sample Output
1
0
并查集的伟大力量正等着我们去挖掘,这里再一次让我们脑力激荡。 
  1 #include<iostream>
  2 #include<algorithm>
  3 #include<cstring>
  4 using namespace std;
  5 const int oo=11111111;
  6 const int N=220;
  7 class Coor
  8 {
  9     public:
 10     int s,e,speed;//代表线的起始点和终点
 11     friend bool operator<(Coor a,Coor b)
 12     {
 13     return (a.speed<b.speed);//从小到大排序,这样利用贪心算法比较节省时间
 14     }
 15 };
 16 class Comfort
 17 {
 18     public:
 19         Comfort(int n,int m)//构造函数
 20         {
 21             num=n;
 22             side=m;
 23             p=new int[n+1];//临时分配数组空间
 24             edge=new Coor[m+1];
 25         }
 26         ~Comfort()
 27         {
 28             delete []p;
 29             delete []edge;
 30         }
 31         
 32         void initp()
 33         {
 34             for(int i=0;i<=num;i++)
 35             p[i]=i;
 36         }
 37         void inputedge()
 38         {
 39             for(int i=0;i<side;i++)
 40             cin>>edge[i].s>>edge[i].e>>edge[i].speed;
 41             sort(edge,edge+side);//排序
 42         }
 43         int find(int x)
 44         {
 45             if(x==p[x])return x;
 46             return p[x]=find(p[x]);//压缩路径
 47         }
 48         void Union(Coor coor)
 49         {
 50             int fa=find(coor.s);
 51             int fb=find(coor.e);
 52             if(fa!=fb)p[fa]=fb;
 53         }
 54         void Dealpart(int q)//以下代码的作用是判断从起点到终点路径想通的最大值和最小值
 55          //详细解释:首先i从零开始,然后下面的循环J从i 开始,在一轮搜索后,应当找到最大值确定的相通路径,若第一轮找不到必然不相通,下面已经处理这样的问题。
 56      //第一轮能够确定最大值后,开始循环直到确定最小值,当起点i不断的向前推进,当推进到起点和终点不连通的时候算是找到了最小值。
 57         {
 58             while(q--)
 59             {
 60                 scanf("%d %d",&start,&end);
 61                 less=oo;
 62                 for(int i=0;i<side;i++)
 63                 {
 64                     initp();
 65                     int temp=oo;
 66                     for(int j=i;j<side;j++)
 67                     {
 68                         Union(edge[j]);//这里每次都连接一个,直到连接到起点终点相通为止,先确定最大值,后确定最小值
 69                         int X=find(start);
 70                         int Y=find(end);
 71                         if(X==Y)
 72                         {
 73                             temp=edge[j].speed-edge[i].speed;
 74                             break;
 75                         }
 76                     }
 77                         if(temp<less)
 78                         less=temp;
 79                         if(less==0)break;//如果less已经为零了就不需要继续循环了,因为没有比他更小的了,节约时间
 80                         if(less==oo)break;//如果在第一轮寻找中都没有找到一个确切的值,那么这两个点是不连通的,所以直接退出循环,节约时间
 81                 }
 82                 if(less==oo)cout<<-1<<endl;
 83                 else cout<<less<<endl;
 84             }
 85         }
 86     private:
 87         int less;
 88         int *p;
 89         int num,side;
 90         Coor *edge;
 91         int start,end;
 92 };
 93 int main()
 94 {
 95     int n,m,Q;
 96     while(cin>>n>>m)
 97     {
 98         Comfort    Object(n,m);
 99         Object.inputedge();
100         cin>>Q;
101         Object.Dealpart(Q);
102     }
103     return 0;
104 }

 


转载于:https://www.cnblogs.com/sytu/p/3861562.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/420752.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

h5 server send event(sse)

1. sse概述 概念&#xff1a; H5支持使用JS脚本不间断的访问服务器(推送)轮询: 页面使用js的定时器&#xff0c;定时发送请求查询最新数据 使用js将最新数据加载至页面 每发送一次数据&#xff0c;需要建立新的连接 时间间隔由客户端决定 优点&#xff1a;不需要刷新页面、实…

信息抽取--关键句提取

&#xff08;纯属为了记录自己学习的点滴过程&#xff0c;引用资料都附在参考列表&#xff09; 1 基本概念 关键句提取 在一些场合&#xff0c;关键词或关键短语依然显得碎片化&#xff0c;不足以表达完整的主题。这时通常提取中心句子作为文章的简短摘要。 2 问题 关键句提…

Netty 中 IOException: Connection reset by peer 与 java.nio.channels.ClosedChannelException: null

最近发现系统中出现了很多 IOException: Connection reset by peer 与 ClosedChannelException: null 深入看了看代码, 做了些测试, 发现 Connection reset 会在客户端不知道 channel 被关闭的情况下, 触发了 eventloop 的 unsafe.read() 操作抛出 而 ClosedChannelException 一…

注解方式实现aop

aop注解实现spring配置文件目标接口&#xff0c;目标实现类&#xff0c;切面类 注解写法使用spring-test测试spring配置文件 <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema/beans"xmln…

文本聚类

&#xff08;纯属为了记录自己学习的点滴过程&#xff0c;引用资料都附在参考列表&#xff09; 1 基本概念 聚类(cluster analysis )指的是将给定对象的集合划分为不同子集的过程&#xff0c;目标是使得每个子集内部的元素尽量相似&#xff0c;不同子集间的元素尽量不相似。 …

sublime text3下BracketHighlighter的配置方法

st3的配置方法和st2是有区别的&#xff0c;所以网上搜索到的方法大多不能用&#xff0c;我google之后总结了一下。 一、 1、在st3中按preferences-->package settings-->Bracket highlighter-->Bracket settings-Default打开配置文件。 2、将配置文件信息全选复制一份…

利用spring注解创建bean

spring注解spring 原始注解1.1 Component注解1.2 Controller,Service,Repository同上1.3 注解方式依赖注入spring 新注解1. 用来解析配置类&#xff0c;利用配置类替代xml注解代替了xml的繁琐配置 spring 原始注解 1.1 Component注解 <!--spring 使用注解创建对象 compone…

文本分类--普通分类

1 基本概念 文本分类 文本分类&#xff08;text classification&#xff09;&#xff0c;指的是将一个文档归类到一个或多个类别的自然语言处理任务。文本分类的应用场景非常广泛&#xff0c;包括垃圾邮件过滤、自动打标等任何需要自动归档文本的场合。 文本分类在机器学习中属…

hdoj 2041 超级阶梯

代码&#xff1a; #include <stdio.h>int main(){int n;int i;int m;int count;int dp[50];while(scanf("%d",&n)!EOF){dp[1]1;dp[2]1;dp[3]2;while(n--){count0;scanf("%d",&m);for(i4; i<m; i){dp[i]dp[i-1]dp[i-2];}printf("%d\n…

文本分类--情感分析

&#xff08;纯属为了记录自己学习的点滴过程&#xff0c;引用资料都附在参考列表&#xff09; 1 基本概念 情感分析 对于情感分析而言&#xff0c;只需要准备标注了正负情感的大量文档&#xff0c;就能将其视作普通的文本分类任务来解决。此外&#xff0c;一些带有评分的电影…

websocket使用

websocket1. 概述2. websocket的用法3. js代码实现4. 服务器端代码实现maven下载地址&#xff1a;https://mvnrepository.com/artifact/org.java-websocket/Java-WebSocket 1. 概述 什么是websocket - WebSocket是一种网络传输协议&#xff0c; 可在单个TCP连接上进行全双工…

深度学习与自然语言处理

&#xff08;纯属为了记录自己学习的点滴过程&#xff0c;引用资料都附在参考列表&#xff09; 1 传统方法的局限 1.1 传统方法的套路 传统方法的处理流程简单来说就是&#xff1a;特征提取传统机器学习模型训练&#xff1b; 特征提取&#xff1a; 使用了特征模板、TF-IDF、…

linux 烧写(1)

第一部分: 一、BootLoader的概念 BootLoader是系统加电启运行的第一段软件代码&#xff0e;回忆一下PC的体系结构我们可以知道&#xff0c;PC机中的引导加载程序由BIOS&#xff08;其本质就是一段固件程序&#xff09;和位于硬盘MBR中的引导程序一起组成。BIOS在完成硬件检测和…

利用websocket实现一对一聊天

一对一聊天websocket1. 效果展示2. 业务分析&#xff08;逻辑展示...&#xff09;3. 技术点功能 即时发送消息||随时发送消息历史消息显示已读未读状态 1. 效果展示 由于没做登录&#xff0c;就以jack和rose两人聊天 两人可相互发消息 持续输出. . 当只有jack在线时 嘤…

中文分词--词典分词--最长匹配

&#xff08;个人学习笔记&#xff0c;慎重参考&#xff09; 1 基本概念 中文分词 指的是将一段文本拆分为一系列单词的过程&#xff0c;这些单词顺序拼接后等于原文本。 作为中文信息处理的第一站&#xff0c;是后续nlp任务的基础&#xff0c;中文分词算法大致可分为词典规则…

css3动画animation,transition

animation demo1 <!DOCTYPE html> <html><head><meta charset"UTF-8"><title>animation动画</title><style>#div1 {width: 100px;height: 100px;background-color: pink;position: absolute;top: 10%;left: 25%;}/* 延迟…