一个模型解决所有类别的异常检测

文章目录

  • 一、内容说明
  • 二、相关链接
  • 三、概述
  • 四、摘要
    • 1、现有方法存在的问题
    • 2、方案
    • 3、效果
  • 五、作者的实验
  • 六、如何训练自己的数据
    • 1、数据准备
    • 2、修改配置文件
    • 3、代码优化修改
    • 4、模型训练与测试
  • 七、结束

一、内容说明

  • 在我接触的缺陷检测项目中,检测缺陷有两种方法。一种是使用传统方法,采用去噪、二值化、轮廓检测等,但传统方法很受阈值的影响,往往这张图片适用,那张图片就不行,很难调好阈值。另外一种是使用深度学习方法,例如本篇文章的UniAD,也有朋友使用语义分割的方式。
  • 在本文章,我将会介绍无监督缺陷检测算法UniAD的创新点、网络以及如何应用在自己的项目中。
  • 最后来一句“决定我们自身的不是过去的经历,而是我们自己赋予经历的意义”,来自《被讨厌的勇气》

二、相关链接

   论文名称:《A Unified Model for Multi-class Anomaly Detection》
   Github:https://github.com/zhiyuanyou/UniAD
   Paper:https://arxiv.org/abs/2206.03687.pdf

三、概述

  UniAD是由一个邻居掩码编码器(NME) 和一个分层查询解码器(LQD) 组成。
  首先,由固定的预训练骨干网络提取的特征token被NME进一步整合,以得出编码器嵌入。然后,在LQD的每一层中,可学习的查询嵌入与编码器嵌入和前一层的输出相继融合(第一层为自我融合)。特征融合是由邻居掩码注意力(NMA)完成的。LQD的最终输出被看作是重构的特征。此外,还提出了一个特征抖动(FJ)策略,向输入特征添加扰动,引导模型从去噪任务中学习正态分布。最后,通过重建差异得到异常定位和检测的结果
  通俗说法:我已经学习了正常图片是什么样子,输入一张缺陷图,我就重构出它的正常图,将正常图和输入图做对比,不就知道哪里有缺陷了😄

图1

图1

图1说明:
 (a)图是已经存在的方法,图片中有两种图片类型,分别是青色和蓝色,需要两个边界,才能区分两种类型图片的缺陷
 (b)图是该论文提出的方法,用一个边界就能区分所有类别图片
 (c)图说明在以前的方法里,解决多类型图片缺陷的方法,一种缺陷类型使用一个模型,多个类型用多个模型识别, one-class-one-model
 (d)图是该论文的重点,用一个统一的模型识别所有缺陷,a unified framework

四、摘要

1、现有方法存在的问题

   已有的重构方法存在 “identity shortcut” 的问题,即重构的图片和输入图片差不多,像是对输入图片的复制,图片越复杂,这个问题越严重

2、方案

(1)提出了“layer-wise query decoder”(分层查询解码器)
   看下文图2的(a)图,MLP和CNN的曲线逐渐上升,突然下降,Transformer也有下降,但下降幅度要小些。曲线下降主要还是上文提到的“identity shortcut”问题。Ours方法就基本不存在曲线下降问题。
在这里插入图片描述

图2

(2)采用了“neighbor masked attention”模块(邻居掩码注意力)

   特征不跟自己相关,也不跟邻居相关,避免了information leak。

  请看图3,Query是4x4,与Key做Attention操作时,相邻的值进行mask,将注意力图Attention Map展开。

  话外题:联想常见的Transformer结构,Mask主要有两种作用。第一种是 padding mask ,在encoder和decoder中使用,保证输入长度的一致性;另外一种是 Sequence mask ,在decoder中使用,掩盖当前词后面出现的词。这么一对比就看出作者的mask改动了什么。

在这里插入图片描述

图3

(3)“feature jittering strategy”(特征抖动策略)

  受Bengio的启发,提出了一个“feature jittering strategy”(特征抖动策略),在有噪声的情况下也能恢复源信息

3、效果

  用UniAD模型在15个类别的数据集MVTec-AD上做实验,AUROC分别从88.1%提升到 96.5%,从 89.5%提升到96.8%

五、作者的实验

  Normal正常图片;Anomaly异常图片;Recon重构图;GT标注的mask图;Pred是Anomaly和Recon差异图,对缺陷进行定位,颜色越深,表示缺陷的概率越大。效果看起来,so nice
在这里插入图片描述

图4
  下图是作者做的消融实验,不细讲,看图

在这里插入图片描述

图5

六、如何训练自己的数据

  图6是我在自己的数据上做的训练,数据特点是:缺陷图片少、缺陷小,效果还是可以的
在这里插入图片描述

图6
那么如何在自己的数据上做训练呢?

1、数据准备

  • 进入./data/创建新文件夹/ (可参考./data/MVTec-AD/)
  • 创建train.json、test.json文件,格式如下:
    {"filename": "000_00_00/train/good/bad_02_0419_Image_20230419104815488_0_0_1280_1280.png", "label": 0, "label_name": "good", "clsname": "000_00_00"}{"filename": "000_02_01/train/good/good_06_0421_Image_20230420180152737_922_563_2202_1843.png", "label": 0, "label_name": "good", "clsname": "000_02_01"}...
    字段说明
      filename:图片路径
      label:标签(0无缺陷、1缺陷)
      label_name:标签名称(good无缺陷、bad缺陷)
      clsname:图片类型名称

2、修改配置文件

  • 进入cd ./experiments/创建新文件夹/ (具体可参考cd ./experiments/MVTec-AD/,将MVTec-AD的文件复制到自己文件夹)
  • 修改config.yaml,如图7
    在这里插入图片描述
图7

修改说明

  image_dir:训练图片路径
  meta_file:训练和测试的json文件

3、代码优化修改

  预训练模型提取特征时,卷积采用zero-padding会导致边界引入新信息,造成误检。文献提出使用reflection_padding可降低边界误检,在github代码中还未修改,需要手动修改。
代码路径:./models/efficientnet/utils.py
原代码

self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2))

修改为

self.static_padding = nn.ReflectionPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2))

4、模型训练与测试

  • 模型训练:
       1. cd ./experiments/自己的文件夹/
       2. sh train_torch.sh #NUM_GPUS #GPU_IDS
      例子:sh train_torch.sh 1 0(#NUM_GPUS:gpu个数,#GPU_IDS:gpu编号)
  • 模型测试 :
       sh eval_torch.sh #NUM_GPUS #GPU_IDS

七、结束

   如果文章对你有所帮助,请记得点赞收藏哦,手动笔芯❤️❤️❤️

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/41657.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络通信基础

1.网络结构模式(C/S和B/S) (1)C/S结构模式 服务器 - 客户机,即 Client - Server(C/S)结构。 优点: 能充分发挥客户端 PC 的处理能力,很多工作可以在客户端处理后再提交给服务器&#xff…

大数据-玩转数据-Flink RedisSink

一、添加Redis Connector依赖 具体版本根据实际情况确定 <dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-redis_2.11</artifactId><version>1.1.5</version> </dependency>二、启动redis 参…

分类预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机多输入分类预测

分类预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机多输入分类预测 目录 分类预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.分类预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机多输入分…

回归预测 | MATLAB实现基于SAE堆叠自编辑器多输入单输出回归预测

回归预测 | MATLAB实现基于SAE堆叠自编辑器多输入单输出回归预测 目录 回归预测 | MATLAB实现基于SAE堆叠自编辑器多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于SAE堆叠自编辑器多输入单输出回归预测&#xff1b; 2.运行环…

Request+Response

文章目录 1. 介绍2. Request对象2.1 Request继承体系2.2 Request获取请求数据1.获取请求行2.获取请求头3.获取请求体4. 请求参数的通用方式5. 解决中文乱码问题 2.3 Request请求转发请求转发资源间共享数据: 3. Response对象3.0 Response 继承体系3.1 Response设置响应数据的功…

iOS手机无法安装Charles 的ssl证书

问题描述 iOS客户端安装证书时一直卡在下载这一步&#xff0c;无法抓包 1、打开Charles&#xff0c;选择help→SSL Proxying→Install Charles Root Certificate on a Mobile Device or Remote Browser 2、按照步骤1中的提示进行操作&#xff0c;手机连接电脑代理&#xff0c;…

Spring系列七:声明式事务

&#x1f418;声明式事务 和AOP有密切的联系, 是AOP的一个实际的应用. &#x1f432;事务分类简述 ●分类 1.编程式事务: 示意代码, 传统方式 Connection connection JdbcUtils.getConnection(); try { //1.先设置事务不要自动提交 connection.setAutoCommit(false…

ZooKeeper的应用场景(分布式锁、分布式队列)

7 分布式锁 分布式锁是控制分布式系统之间同步访问共享资源的一种方式。如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源&#xff0c;那么访问这些资源的时候&#xff0c;往往需要通过一些互斥手段来防止彼此之间的干扰&#xff0c;以保证一致性&#xff0c;…

岛屿的最大面积(力扣)递归 JAVA

给你一个大小为 m x n 的二进制矩阵 grid 。 岛屿 是由一些相邻的 1 (代表土地) 构成的组合&#xff0c;这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0&#xff08;代表水&#xff09;包围着。 岛屿的面积是岛上值为 1 的…

error_Network Error

此页面为订单列表&#xff0c;是混合开发(页面嵌入在客户端中) 此页面为订单列表&#xff0c;此需求在开发时后端先将代码发布在测试环境&#xff0c;我在本地调试时调用的后端接口进行联调没有任何问题。 此后我将代码发布在测试环境&#xff0c;在app中打开页面&#xff0c…

【C与C++的相互调用方法】

C与C的相互调用方法 C与C为什么相互调用的方式不同C中调用CC中调用C致谢 C与C为什么相互调用的方式不同 C 和 C 之间的相互调用方式存在区别&#xff0c;主要是由于 C 和 C 语言本身的设计和特性不同。 函数调用和参数传递方式不同&#xff1a;C 和 C 在函数调用和参数传递方面…

docker oracle linux命令执行sql

docker 安装参照 https://blog.csdn.net/arcsin_/article/details/123707618 docker container ls -a命令查看容器名 打开容器 docker exec -it orcl19c_03 /bin/bashsys 用户登录容器 sqlplus / as sysdbashow pdbs;什么是pdb数据库&#xff1f;什么是CDB&#xff1f; 参…

微信小程序 蓝牙设备连接,控制开关灯

1.前言 微信小程序中连接蓝牙设备&#xff0c;信息写入流程 1、检测当前使用设备&#xff08;如自己的手机&#xff09;是否支持蓝牙/蓝牙开启状态 wx:openBluetoothAdapter({}) 2、如蓝牙已开启状态&#xff0c;检查蓝牙适配器的状态 wx.getBluetoothAdapterState({}) 3、添加…

第十三章 SpringBoot项目(总)

1.创建SpringBoot项目 1.1.设置编码 1.4.导入已有的spring boot项目 2.快速搭建Restfull风格的项目 2.1.返回字符串 RestController public class IndexController {RequestMapping("/demo1")public Object demo1() {System.out.println("demo1 ran...."…

kafka的位移

文章目录 概要消费位移__consumer_offsets主题位移提交 概要 本文主要总结kafka的位移是如何管理的&#xff0c;在broker端如何通过命令行查看到位移信息&#xff0c;并从代码层面总结了位移的提交方式。 消费位移 对于 Kafka 中的分区而言&#xff0c;它的每条消息都有唯一…

0基础学习VR全景平台篇 第86篇:智慧眼-为什么要设置分组选择?

一、功能说明 分组选择&#xff0c;也就是给全景的每个分组去设置其所属的行政区划&#xff0c;设置后只有属于同行政区划的成员才可进入其场景进行相关操作&#xff0c;更便于实现城市的精细化管理。 二、后台编辑界面 分组名称&#xff1a;场景的分组名称。 对应分类&…

网络安全--linux下Nginx安装以及docker验证标签漏洞

目录 一、Nginx安装 二、docker验证标签漏洞 一、Nginx安装 1.首先创建Nginx的目录并进入&#xff1a; mkdir /soft && mkdir /soft/nginx/cd /soft/nginx/ 2.下载Nginx的安装包&#xff0c;可以通过FTP工具上传离线环境包&#xff0c;也可通过wget命令在线获取安装包…

【数据结构与算法】队列

文章目录 一&#xff1a;队列1.1 队列的概念1.2 队列的介绍1.3 队列示意图 二&#xff1a;数组模拟队列2.1 介绍2.2 思路2.3 代码实现2.3.1 定义队列基本信息2.3.2 初始化队列2.3.3 判断队列是否满&#xff0c;是否为空2.3.4 添加数据到队列2.3.5 获取队列数据&#xff0c;出队…

图数据库_Neo4j和SpringBoot整合使用_创建节点_删除节点_创建关系_使用CQL操作图谱---Neo4j图数据库工作笔记0009

首先需要引入依赖 springboot提供了一个spring data neo4j来操作 neo4j 可以看到它的架构 这个是下载下来的jar包来看看 有很多cypher对吧 可以看到就是通过封装的驱动来操作graph database 然后开始弄一下 首先添加依赖

【实用黑科技】如何 把b站的缓存视频弄到本地——数据恢复软件WinHex 和 音视频转码程序FFmpeg

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;效率…