Android漏洞之战——整体加壳原理和脱壳技巧详解

一、前言

为了帮助更加方便的进行漏洞挖掘工作,前面我们通过了几篇文章详解的给大家介绍了动态调试技术、过反调试技术、Hook技术、过反Hook技术、抓包技术等,掌握了这些可以很方便的开展App漏洞挖掘工作,而最后我们还需要掌握一定的脱壳技巧,进行进一步助力我们漏洞挖掘的效率,本文主要介绍Android App加壳中的整体dex加壳,帮助大家掌握加壳的原理和脱壳的各种技能。

本文第二节主要讲述Android启动流程和加壳原理

本文第三节主要介绍整体加壳的实现

本文第四节主要讲当下脱壳点的概念

本文第五节讲述现有的脱壳技巧

二、相关介绍

1.Android App启动流程

(1)Android系统启动流程

我们要彻底的了解App加壳原理,首先我们从了解App的启动流程出发,先于App启动之前,Android系统是启动最早,下面我们来详细查看一下Android系统的启动过程:

我在Xposed源码定制一文中详细的讲解了Android的启动流程,简单来说就是:

1

加载BootLoader --> 初始化内核 --> 启动init进程 --> init进程fork出Zygote进程 --> Zygote进程fork出SystemServer进程

我们就了解了最后Zygote进程fork出第一个进程:SystemServer进程,SystemServer主要完成了以下工作:

 

android app安装

首先这里我们先介绍一下PackageManagerService,其主要是完成Android中应用程序安装的服务,我们了解的Android应用程序安装的方式:

1

2

3

4

· 系统启动时安装,没有安装界面

· 第三方应用安装,有安装界面,也是我们最熟悉的方式

· ADB命令安装,没有安装界面

· 通过各类应用市场安装,没有安装界面

image-20220612154820955

虽然安装方式不同,但是最后四种方式都是通过PackageManagerService服务来完成应用程序的安装。而PackageManagerService服务则通过与Installd服务通信,发送具体的指令来执行应用程序的安装、卸载等工作

1

2

3

4

5

6

public static final IPackageManager main(Context context, Installer installer,

    boolean factoryTest, boolean onlyCore) {

        PackageManagerService m = new PackageManagerService(context, installer, factoryTest, onlyCore);

        ServiceManager.addService("package", m);

    return m;

}

应用程序在安装时涉及到如下几个重要目录:

image-20220612154820955

我们了解完App的安装流程是由PackageManagerService,同理SystemServer启动了一个更加重要的服务ActivityManagerService, 而AMS其中很重要的一个作用就是启动Launcher进程,具体是怎么启动的,大家可以参考文章:Android系统启动流程(四)Launcher启动过程与系统启动流程,这里就不再详细讲解,而进入Launcher进程,我们就进入了App启动的流程。

(2)App启动流程

Android系统启动的最后一步是启动一个Home应用程序,这个应用程序用来显示系统中已经安装的应用程序,这个Home应用程序就叫做Launcher。应用程序Launcher在启动过程中会请求PackageManagerService返回系统中已经安装的应用程序的信息,并将这些信息封装成一个快捷图标列表显示在系统屏幕上,这样用户可以通过点击这些快捷图标来启动相应的应用程序

前面我们描述了AMS将Launcher启动,然后进入App启动流程,这里参考文章:ActivityThread的理解和APP的启动过程

image-20220612154820955

1

2

3

4

5

6

7

8

(1)点击桌面APP图标时,Launcher的startActivity()方法,通过Binder通信,调用system_server进程中AMS服务的startActivity方法,发起启动请求

(2)system_server进程接收到请求后,向Zygote进程发送创建进程的请求

(3)Zygote进程fork出App进程,并执行ActivityThread的main方法,创建ActivityThread线程,初始化MainLooper,主线程Handler,同时初始化ApplicationThread用于和AMS通信交互

(4)App进程,通过Binder向sytem_server进程发起attachApplication请求,这里实际上就是APP进程通过Binder调用sytem_server进程中AMS的attachApplication方法,AMS的attachApplication方法的作用是将ApplicationThread对象与AMS绑定

(5)system_server进程在收到attachApplication的请求,进行一些准备工作后,再通过binder IPC向App进程发送handleBindApplication请求(初始化Application并调用onCreate方法)和scheduleLaunchActivity请求(创建启动Activity)

(6)App进程的binder线程(ApplicationThread)在收到请求后,通过handler向主线程发送BIND_APPLICATION和LAUNCH_ACTIVITY消息,这里注意的是AMS和主线程并不直接通信,而是AMS和主线程的内部类ApplicationThread通过Binder通信,ApplicationThread再和主线程通过Handler消息交互。

(7)主线程在收到Message后,创建Application并调用onCreate方法,再通过反射机制创建目标Activity,并回调Activity.onCreate()等方法

(8)到此,App便正式启动,开始进入Activity生命周期,执行完onCreate/onStart/onResume方法,UI渲染后显示APP主界面

到这里,我们的大致弄清了APP的启动流程,而这里我们就进入了加壳中十分重要的地方ActivityTread

(3)ActivityThread启动流程

寒冰大佬在FART:ART环境下基于主动调用的自动化脱壳方案 一文中讲述了ActivityThread.main()是进入App世界的大门,并由此展开了对加壳原理的讲述

同理接下来,我们开始进行源码分析,了解ActivityThread的具体操作:

xref/frameworks/base/core/java/android/app/ActivityThread.java

image-20220612164337749

根据寒冰大佬描述,在ActivityThread完成实例化操作,调用thread.attach(false)完成一系列初始化准备工作,最后主线程进入消息循环,等待接收来自系统的消息。当收到系统发送来的bindapplication的进程间调用时,调用函数handlebindapplication来处理该请求

1

2

3

4

5

6

7

8

9

10

public void handleMessage(Message msg) {

****

    case BIND_APPLICATION:

        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "bindApplication");

        AppBindData data = (AppBindData)msg.obj;

        handleBindApplication(data);

        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);

        break;

****

}

在处理消息过程,很很明显进入了handlebindapplication函数

这里我再用寒冰大佬文章的内容:

image-20220612164337749

我们定位第四步,Application进行实例化,然后进入makeApplication

image-20220612165753498

然后我们进入newApplication

image-20220612170020202

这里我们可以看见完成了两件事:

1

2

1)完成了Application的实例化

2)并调用Application.attach()函数

然后我们继续进入Application.attach()函数

image-20220612170305879

这里我们就进一步调用了attachBaseContext()方法

最后回到handlebindapplication中执行第6步,进入callApplicationOnCreate()函数

image-20220612170604374

就执行了Application.onCreate()方法

总结:

1

2

3

4

从上可知, App的运行流程是

    初始化————>Application的构造函数————>Application.attachBaseContext()————>Application.onCreate()函数

最后才会进入MainActivity中的attachBaseContext函数、onCreate函数

所以加壳厂商要在程序正式执行前,也就是上面的流程中进行动态加载和类加载器的修正,这样才能对加密的dex进行释放,而一般的1厂商往往选择在Application中的attachBaseContext或onCreate函数进行

这里我附上网上一个大佬的详细执行流程图:

image-20220612170604374

2.整体加壳原理详解

(1)整体加壳原理

Dex整体加壳可以理解为在加密的源Apk程序外面有套上了一层外壳,简单过程为:

image-20220424141415510

image-20220424141415510

如何对App进行加一层外壳呢,这里就需要应用动态加载的原理,关于动态加载和类加载器,我在上篇文章中有详细讲解:Android加壳脱壳学习(1)——动态加载和类加载机制详解

这里我们可以用一个案例来进一步讲述,我们打开一个整体加壳的样本

image-20220612172943793

我们很明显看见,除了一个代理类Application,其他相关的代码信息都无法发现

image-20220612173124912

在代理类中反射调用了一些方法,很显然我们解析出的结果都无法查找,很明显就说明在Application.attchBaseContext()和Application.onCreate()中必须要完成对源加密的dex的动态加载和解密

结合上面的描述,App加载应用解析时就是这个流程:

1

2

3

4

5

6

1)BootClassLoader加载系统核心库

2)PathClassLoader加载APP自身dex

3)进入APP自身组件,解析AndroidManifest.xml,然后查找Application代理

4)调用声明Application的attachBaseContext()对源程序进行动态加载或解密

5)调用声明Application的onCreate()对源程序进行动态加载或解密

6)进入MainActivity中的attachBaseContext(),然后进入onCreate()函数,执行源程序代码

(2)类加载器的修正

上面我们已经很清晰的了解了壳加载的流程,我们很明显的意识到一个问题,我们从头到尾都是用PathClassLoader来加载dex,而上篇文章我在讲类加载器的过程中说过

image-20220612185103615

1

2

3

4

5

6

7

8

Android中的ClassLoader类型分为系统ClassLoader和自定义ClassLoader。其中系统ClassLoader包括3种是BootClassLoader、DexClassLoader、PathClassLoader

(1)BootClassLoader:Android平台上所有Android系统启动时会使用BootClassLoader来预加载常用的类

(2)BaseDexClassLoader:实际应用层类文件的加载,而真正的加载委托给pathList来完成

(3)DexClassLoader:可以加载dex文件以及包含dex的压缩文件(apk,dex,jar,zip),可以安装一个未安装的apk文件,一般为自定义类加载器

(4)PathClassLoader:可以加载系统类和应用程序的类,通常用来加载已安装的apk的dex文件

补充:

Android 提供的原生加载器叫做基础类加载器,包括:BootClassLoader,PathClassLoader,DexClassLoader,InMemoryDexClassLoader(Android 8.0 引入),DelegateLastClassLoader(Android 8.1 引入)

我们要想动态加载dex文件必须使用自定义的DexClassLoader,那我们直接使用DexClassLoader进行加载就可以么,很显然不行,还是会报异常

1

DexClassLoader加载的类是没有组件生命周期的,即DexClassLoader即使通过对APK的动态加载完成了对组件类的加载,当系统启动该组件时,依然会出现加载类失败的异常

所以我们要想使用DexClassLoader进行动态加载dex,我们需要进行类加载器的修正

当前实现类加载器的修正,主要有两种方案:

1

2

1)替换系统组件类加载器为我们的DexClassLoader,同时设置DexClassLoader的parent为系统组件加载器

2)打破原有的双亲委派关系,在系统组件类加载器PathClassLoader和BootClassLoader的中间插入我们自己的DexClassLoader

<1>类加载器替换

怎么去替换系统的类加载器了,这就和我们上面分析的ActivityThread中LoadedApk有关了,LoadedApk主要负责加载一个Apk程序,我们进一步分析源码

image-20220612190524422

很明显,我们可以想到我们通过反射获取mclassLoader,然后使用我们的DexClassLoader进行替换,不就可以成功的让DexClassLoader拥有生命周期了么

源码实现:

1

2

3

4

5

6

总结:

    1)获取ActivityThread实例

    2)通过反射获取类加载器

    3)获取LoadedApk

    4)获取mClassLoader系统类加载器

    5)替换自定义类加载器为系统类加载器

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

public static void replaceClassLoader(Context context,ClassLoader dexClassLoader){

       ClassLoader pathClassLoader = MainActivity.class.getClassLoader();

       try {

           //1.获取ActivityThread实例

           Class ActivityThread = pathClassLoader.loadClass("android.app.ActivityThread");

           Method currentActivityThread = ActivityThread.getDeclaredMethod("currentActivityThread");

           Object activityThreadObj = currentActivityThread.invoke(null);

           //2.通过反射获得类加载器

           //final ArrayMap<String, WeakReference<LoadedApk>> mPackages = new ArrayMap<>();

           Field mPackagesField = ActivityThread.getDeclaredField("mPackages");

           mPackagesField.setAccessible(true);

           //3.拿到LoadedApk

           ArrayMap mPackagesObj = (ArrayMap) mPackagesField.get(activityThreadObj);

           String packagename = context.getPackageName();

           WeakReference wr = (WeakReference) mPackagesObj.get(packagename);

           Object LoadApkObj = wr.get();

           //4.拿到mclassLoader

           Class LoadedApkClass = pathClassLoader.loadClass("android.app.LoadedApk");

           Field mClassLoaderField = LoadedApkClass.getDeclaredField("mClassLoader");

           mClassLoaderField.setAccessible(true);

           Object mClassLoader =mClassLoaderField.get(LoadApkObj);

           Log.e("mClassLoader",mClassLoader.toString());

           //5.将系统组件ClassLoader给替换

           mClassLoaderField.set(LoadApkObj,dexClassLoader);

       }

       catch (ClassNotFoundException e) {

           e.printStackTrace();

       } catch (NoSuchMethodException e) {

           e.printStackTrace();

       } catch (IllegalAccessException e) {

           e.printStackTrace();

       } catch (InvocationTargetException e) {

           e.printStackTrace();

       } catch (NoSuchFieldException e) {

           e.printStackTrace();

       }

   }

<2>类加载器插入

还有一种方案,动态加载中我们讲述了类加载器的双亲委派机制,就是说我们的类加载器刚拿到类,并不会直接进行加载,而是先判断自己是否加载,如果没有加载则给自己的父类,父类再给父类,所以我们让DexClassLoader成为PathClassLoader的父类,这样就可以解决DexClassLoader生命周期的问题

1

2

3

总结:

    1)将DexClassloader父节点设置为BootClassLoader

    2)将PathClassLoader父节点设置为DexClassloader

代码实现:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public static void replaceClassLoader(Context context, ClassLoader dexClassLoader){

        //将pathClassLoader父节点设置为DexClassLoader

        ClassLoader pathClassLoaderobj = context.getClassLoader();

        Class<ClassLoader> ClassLoaderClass = ClassLoader.class;

        try {

            Field parent = ClassLoaderClass.getDeclaredField("parent");

            parent.setAccessible(true);

            parent.set(pathClassLoaderobj,dexClassLoader);

        } catch (NoSuchFieldException e) {

            e.printStackTrace();

        } catch (IllegalAccessException e) {

            e.printStackTrace();

        }

    }

完成壳加载器的修正后,我们就可以正常的加载dex了

三、整体加壳案例实现

前面我们详细讲述了App运行机制和整体加壳的实现机制,下面我们就按照前面的讲述,来实现一个简单的整体加壳案例

实验准备:

1

2

源程序

加壳程序

1.编写源程序

image-20220612193114397

这就是我们的源程序,源程序运行,我们会在日志中看见我们打印的信息,然后我们生成dex文件

2.编写壳程序

(1)准备工作

将dex文件上传sdcard,并给应用设置存储权限

image-20220612195812601

image-20220612200126917

(2)编写代理类

我们首先编写代理类,模仿上面的加壳应用

image-20220612193735398

然后我们设置AndroidManifest.xml中的代理类别

image-20220612193921062

然后我们选择在attachBaseContext或onCreate中对我们的dex进行动态加载和类加载器修正即可,因为这里我们源dex并未进行加密,所以也无需解密的过程

然后加入导入类的Activity

image-20220612215843088

(3)动态加载

我们进行动态加载classes.dex

image-20220612200319851

然后使用上面的一种方法进行类加载器修正

image-20220612215713138

然后运行

image-20220612215745595

运行成功,说明我们的整体加壳成功

四、脱壳点相关概念详解

上面我们已经理解了APP加壳的基本原理,下面我们进一步来学习如何进行脱壳,Android APP脱壳绕不开DexFileArtMethod两个概念,这两个在脱壳中扮演的至关重要的地位,无数的脱壳点都是从其演变而来。

1.Dex加载流程

我们在分析脱壳点过程中,首先就需要明白Dex加载的基本流程

image-20220612215745595

1

2

3

DexPathList:该类主要用来查找Dex、SO库的路径,并这些路径整体呈一个数组

Element:根据多路径的分隔符“;”将dexPath转换成File列表,记录所有的dexFile

DexFile:用来描述Dex文件,Dex的加载以及Class的查找都是由该类调用它的native方法完成的

我们依次来分析这个过程中的源码

DexPathList

1

2

3

4

5

6

7

8

/libcore/dalvik/src/main/java/dalvik/system/DexPathList.java

public DexPathList(ClassLoader definingContext, String dexPath,

            String librarySearchPath, File optimizedDirectory) {

**********************     

   this.dexElements = makeDexElements(splitDexPath(dexPath), optimizedDirectory,

                                         suppressedExceptions, definingContext);   

********************** 

            }

makeDexElements

1

2

3

4

5

6

private static Element[] makeDexElements(List<File> files, File optimizedDirectory,

          List<IOException> suppressedExceptions, ClassLoader loader) {

**********************           

       DexFile dex = loadDexFile(file, optimizedDirectory, loader, elements);   

**********************        

          }

loadDexFile

1

2

3

4

5

6

7

8

9

10

private static DexFile loadDexFile(File file, File optimizedDirectory, ClassLoader loader,

                                       Element[] elements)

            throws IOException {

        if (optimizedDirectory == null) {

            return new DexFile(file, loader, elements);

        } else {

           String optimizedPath = optimizedPathFor(file, optimizedDirectory);

            return DexFile.loadDex(file.getPath(), optimizedPath, 0, loader, elements);

        }

    }

loadDex

1

2

3

4

static DexFile loadDex(String sourcePathName, String outputPathName,

      int flags, ClassLoader loader, DexPathList.Element[] elements) throws IOException {

      return new DexFile(sourcePathName, outputPathName, flags, loader, elements);

  }

DexFile

1

2

3

4

5

6

7

/libcore/dalvik/src/main/java/dalvik/system/DexFile.java

DexFile(String fileName, ClassLoader loader, DexPathList.Element[] elements) throws IOException {

        mCookie = openDexFile(fileName, null, 0, loader, elements);

        mInternalCookie = mCookie;

        mFileName = fileName;

        //System.out.println("DEX FILE cookie is " + mCookie + " fileName=" + fileName);

    }

这里出现的mCookie,mCookie在C/C++层中是DexFile的指针,我们在下面详细讲解

openDexFile

1

2

3

4

5

6

7

8

9

10

11

private static Object openDexFile(String sourceName, String outputName, int flags,

        ClassLoader loader, DexPathList.Element[] elements) throws IOException {

       // Use absolute paths to enable the use of relative paths when testing on host.

        return openDexFileNative(new File(sourceName).getAbsolutePath(),

                                 (outputName == null)

                                    ? null

                                   : new File(outputName).getAbsolutePath(),

                                      flags,

                                   loader,

                                   elements);

    }

这里就进入了C/C++层

openDexFileNative

image-20220613134340460

为了节约篇幅,我们快速分析,中间再经过一些函数

1

2

3

4

OpenDexFilesFromOat()

MakeUpToDate()

GenerateOatFileNoChecks()

Dex2Oat()

最后进进入了Dex2Oat,这就进入了Dex2Oat的编译流程

反之如果我们在下面Dex2Oat的流程中通过Hook相关方法或execv或execve导致dex2oat失败,我们就会返回到OpenDexFilesFromOat

OpenDexFilesFromOat

image-20220613145156590

会先在HasOriginalDexFiles里尝试加载我们的Dex,也就是说,倘若我们的壳阻断了dex2oat的编译流程,然后又调用了DexFile的Open函数。

DexFile::Open

image-20220613145606897

校验dex的魔术字字段,然后调用DexFile::OpenFile

DexFile::OpenFile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

/art/runtime/dex_file.cc

std::unique_ptr<const DexFile> DexFile::OpenFile(int fd,

                                                const std::string& location,

                                                bool verify,

                                                bool verify_checksum,

                                                std::string* error_msg) {

 **************************************

 std::unique_ptr<DexFile> dex_file = OpenCommon(map->Begin(),

                                                map->Size(),

                                                location,

                                                dex_header->checksum_,

                                                kNoOatDexFile,

                                                verify,

                                                verify_checksum,

                                                error_msg);  

  **************************************

                                                }

OpenCommon

image-20220613145950224

最后又再次回到DexFile类,这里我们的dex文件加载基本流程分析完毕

2.Dex2Oat编译流程

Dex2oat是google公司为了提高编译效率的一种机制,从Android8.0开始实施,一些加壳厂商实现抽取壳往往会禁用Dex2oat,而针对整体加壳没有禁用的Dex2Oat也成为了脱壳点

image-20220613134904994

Exec

1

2

3

4

5

6

7

8

9

10

11

/art/runtime/exec_utils.cc

bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg) {

  int status = ExecAndReturnCode(arg_vector, error_msg);

  if (status != 0) {

    const std::string command_line(android::base::Join(arg_vector, ' '));

    *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status",

                              command_line.c_str());

    return false;

  }

  return true;

}

ExecAndReturnCode

image-20220613143206138

而我们就可以通过Hook execv或execve来禁用Dex2Oat,而如果我们不禁用dex2oat,execve函数是用来调用dex2oat的二进制程序实现对dex文件的加载,我们这时候找到dex2oat.cc这个文件,找到main函数

1

2

3

4

5

6

7

/art/dex2oat/dex2oat.cc

 int main(int argc, char** argv) {

  int result = static_cast<int>(art::Dex2oat(argc, argv));

  if (!art::kIsDebugBuild && (RUNNING_ON_MEMORY_TOOL == 0)) {

    _exit(result);

  }

  return result;

这里我们调用了Dex2oat

Dex2Oat

1

2

3

4

5

6

7

8

9

10

11

12

/art/dex2oat/dex2oat.cc

static dex2oat::ReturnCode Dex2oat(int argc, char** argv) {

   **************************************

   dex2oat::ReturnCode setup_code = dex2oat->Setup();

    dex2oat::ReturnCode result;

  if (dex2oat->IsImage()) {

    result = CompileImage(*dex2oat);

  } else {

    result = CompileApp(*dex2oat);

 }

   **************************************

}

Dex2oat中会对dex文件进行逐个类逐个函数的编译,setup()函数完成对dex的加载

然后顺序执行,就会进入CompileApp

编译过程中会按照逐个函数进行编译,就会进入CompileMethod

image-20220613151229524

到这里Dex2oat的基本流程就分析完毕

3.类加载流程

要理解DexFile为什么如此重要,首先我们要清除Android APP的类加载流程。Android的类加载一般分为两类隐式加载显式加载

1

2

3

4

5

6

7

8

9

1.隐式加载:

    (1)创建类的实例,也就是new一个对象

    (2)访问某个类或接口的静态变量,或者对该静态变量赋值

    (3)调用类的静态方法

    (4)反射Class.forName("android.app.ActivityThread")

    (5)初始化一个类的子类(会首先初始化子类的父类)

2.显示加载:

    (1)使用LoadClass()加载

    (2)使用forName()加载

我们详细看一下显示加载:

1

2

3

Class.forName 和 ClassLoader.loadClass加载有何不同:

1)ClassLoader.loadClass也能加载一个类,但是不会触发类的初始化(也就是说不会对类的静态变量,静态代码块进行初始化操作)

2)Class.forName这种方式,不但会加载一个类,还会触发类的初始化阶段,也能够为这个类的静态变量,静态代码块进行初始化操作

我们在详细来看一下在类加载过程中的流程:

java层

image-20220612215745595

我们可以发现类加载中关键的DexFile,该类用来描述Dex文件,所以我们的脱壳对象就是DexFile

这里从DexFile进入Native层中,还有一个关键的字段就是mCookie

image-20220613102141423

后面我们详细的介绍mCookie的作用

我们进一步分析,进入Native层

Native层

/art/runtime/native/[dalvik_system_DexFile.cc

image-20220613124716608

1

ConvertJavaArrayToDexFiles对cookie进行了处理

image-20220613125016884

通过这里的分析,我们可以知道mCooike转换为C/C++层指针后,就是dexfile的索引

我们继续分析DefineClass

1

2

3

4

5

6

7

8

9

10

11

art/runtime/class_linker.cc

mirror::Class* ClassLinker::DefineClass(Thread* self,

                                      const char* descriptor,

                                        size_t hash,

                                       Handle<mirror::ClassLoader> class_loader,

                                        const DexFile& dex_file,

                                        const DexFile::ClassDef& dex_class_def) {

***************

LoadClass(self, *new_dex_file, *new_class_def, klass);

***************

}

LoadClass

1

2

3

4

5

6

7

8

9

10

11

art/runtime/class_linker.cc

void ClassLinker::LoadClass(Thread* self,

3120                            const DexFile& dex_file,

3121                            const DexFile::ClassDef& dex_class_def,

3122                            Handle<mirror::Class> klass) {

3123  const uint8_t* class_data = dex_file.GetClassData(dex_class_def);

3124  if (class_data == nullptr) {

3125    return// no fields or methods - for example a marker interface

3126  }

3127  LoadClassMembers(self, dex_file, class_data, klass);

3128}

LoadClassMembers

1

2

3

4

5

6

7

8

9

10

art/runtime/class_linker.cc

void ClassLinker::LoadClassMembers(Thread* self,

                                   const DexFile& dex_file,

                                   const uint8_t* class_data,

                                   Handle<mirror::Class> klass) {

***************

      LoadMethod(dex_file, it, klass, method);

      LinkCode(this, method, oat_class_ptr, class_def_method_index);

***************

}

LoadMethod

1

2

3

4

5

6

art/runtime/class_linker.cc

void ClassLinker::LoadMethod(const DexFile& dex_file,

                           const ClassDataItemIterator& it,

                            Handle<mirror::Class> klass,

                             ArtMethod* dst) {

}

LinkCode

image-20220613130149629

我们可以发现这里就进入了从linkcode后就进入了解释器中,并对是否进行dex2oat进行了判断,我们直接进入解释器中继续分析

我们知道Art解释器分为两种:解释模式下quick模式下,而我们又知道Android8.0开始进行dex2oat

1

2

3

如果壳没有禁用dex2oat,那类中的初始化函数运行在解释器模式下

如果壳禁用dex2oat,dex文件中的所有函数都运行在解释器模式下

则类的初始化函数运行在解释器模式下

所以一般的加壳厂商会禁用掉dex2oat,这样可以是所有的函数都运行在解释模式下,所以一些脱壳点选在dex2oat流程中,可能针对禁用dex2oat的情况并不使用,我们这里主要针对整体加壳,就不展开讲述,最后我们得知解释器中会运行在Execute

Execute

1

2

3

4

5

6

7

8

9

10

11

12

13

art/runtime/interpreter/interpreter.cc

static inline JValue Execute(

    Thread* self,

    const DexFile::CodeItem* code_item,

    ShadowFrame& shadow_frame,

    JValue result_register,

    bool stay_in_interpreter = false) REQUIRES_SHARED(Locks::mutator_lock_){

***************

      ArtMethod *method = shadow_frame.GetMethod();

***************

    }

这里我们大致分析完成了类加载的思路

4.DexFile详解

前面我们分析了很多,对dex加载、类加载等都已经有了一个很详细的了解,而最终一切的核心就是DexFile,DexFile就是我们脱壳所关注的重点,寒冰大佬在拨云见日:安卓APP脱壳的本质以及如何快速发现ART下的脱壳点中提到,在ART下只要获得了DexFile对象,那么我们就可以得到该dex文件在内存中的起始地址和大小,进而完成脱壳。

我们先查看一些DexFile的结构体

image-20220613152305983

只要我们能获得起始地址begin和大小size,就可以成功的将dex文件脱取下来,这里我们记得DexFile含有虚函数表,所以根据C++布局,要偏移一个指针

image-20220613152517629

而DexFile类还给我们提供了方便的API

image-20220613152724888

这样只要我们找到函数中有DexFile对象,就可以通过调用API来进一步dump dex文件,由此按照寒冰大佬的思想,大量的脱壳点由此产生

(1)直接查找法

我们通过直接在Android源码中搜索DexFile,就可以获得海量的脱壳点

image-20220613153036103

我们通过在IDA中搜索libart.so导出的DexFile,同样可以获得大量的脱壳点

image-20220613153220786

(2)间接查找法

这里就是寒冰大佬在文章中提到的通过ArtMethod对象的getDexFile()获取到ArtMethod所属的DexFile对象的这种一级间接法,通过Thread的getCurrentMethod()函数首先获取到ArtMethod或者通过ShadowFrame的getMethod获取到ArtMethod对象,然后再通过getDexFile获取到ArtMethod对象所属的DexFile的二级间接法。

1

2

getDexFile()

getMethod()

5.ArtMethod详解

上面我们已经详细分析了DexFile的文件结构,我们知道通过ArtMethod可以获得DexFile,那么为啥又要单独提ArtMethod呢,因为ArtMethod在抽取壳和VMP等壳中扮演了重要的角色

ArtMethod结构体

image-20220613154044296

我们通过ArtMethod可以获得codeitem的偏移和方法索引,熟悉dex结构的朋友知道codeitem就是代码实际的值,而codeitem则再后续加壳技术扮演了至关重要的地址,而且ArtMethod还有非常丰富的方法,可以帮助大家实现很多功能,所以在脱壳工作中也是十分重要的

五、脱壳技术归纳

前面分析了很多,最后无非整体加壳的脱壳方案落脚在DexFile的关键对象上,由此产生了一些常用的方法

image-20220613154906679

1.现有工具脱壳法

工欲善其事必先利其器,整体加壳已经很多年,不少的大佬们都开发了很多非常好用的工具,我们在自己掌握原理过程时,平时工作中也可以使用很多大佬的开发工具,这里随便举几个自己经常用的工具,这里我对各个大佬的脱壳工具进行了一个梳理

image-20220613154906679

(1)FRIDA-DEXDump

这是葫芦娃大佬开发的针对整体加壳的工具,主要通过frida技术,文章参考:深入 FRIDA-DEXDump 中的矛与盾,该工具的特点是一般的hook方案通过直接搜索DEX的头文件dex.035来定位dex的起始地址,但是后来不少公司对头文件的魔术字段进行了抹除,这样针对没有文件头的 DEX 文件,该工具通过map_off 找到 DEX 的 map_list, 通过解析它,并得到类型为 TYPE_MAP_LIST 的条目计算出文件的大小和起始地址,也很好的提供了一种解决思路。

使用方法:

FRIDA-DEXDump使用十分的简单,详细参考github:FRIDA-DEXDump

这里引用一张大佬星球的使用流程图,非常详细,快速进行脱壳

image-20220613161015961

我们简单演示一下,这里结合objection一起使用

image-20220613224143108

然后再次打开脱下来的dex,即可

(2)FDex2

Fdex2主要是利用Android7.0及版本以下的特殊API getDex()来进行脱壳,原本是基于Xposed的模块,不过掌握原理后,大家可以使用各种Hook框架去实现,参考链接:安卓xposed脱壳工具FDex2 

(3)其他工具

针对整体壳的脱壳工具有很多,无非是针对各种脱壳点再采用不同的方法,其原理是殊途同归,而基于源码定制的Fart、youpk等等针对整体加壳壳都可以基本实现完全的脱壳,而且抽取壳也有着很好的效果,下面我们就依次来讲述具体的脱壳方法原理,各种脱壳工具如下图所示:

image-20220613162509955

2.Hook脱壳法

我们前面知道了,只要函数中包含DexFile对象,我们就可以通过Hook技术拿到对象,然后取到begin和size,从而进行脱壳,市面上使用较多的无非是Xposed和frida,我平时使用frida较为方便,这里也用frida和大家演示:

首先我们使用GDA识别加壳程序

image-20220613164418413

很明显是进行了整体加壳,有没其他加壳暂时不知道,我们先进行脱壳

找到脱壳点

通过IDA打开libart.so,搜索DexFile,我们可以找到海量的脱壳点

image-20220613164747966

我们就随便找一个包含DexFile的脱壳函数,然后记录符号值

image-20220613164841377

然后我们编写hook脚本

image-20220613172003659

1

这里之所以获取begin加上一个指针,是因为我们前面讲了dexfile含有一个虚函数地址,所以加上一个指针偏移

然后启动frida_server

image-20220613170608657

附加进程进行dump,这里我们存在sdcard下面,所以需要提前赋予sdcard权限

image-20220613172109177

这里就脱壳成功

image-20220613172222202

然后我们打开相应的dex

image-20220613172222202

此时说明我们整体脱壳成功,不过应用还有抽取壳,这个不是本文解决的内容

3.插桩脱壳法

插桩脱壳法,就是在Android源码里面定位到相应的脱壳点,然后插入相应的代码,重新编译源码生成系统镜像,最后就可以使用定制的系统进行脱壳

我们在源码编译(1)——Android6.0源码编译详解中已经讲述了如何编译源码,接下来我们进行插桩脱壳

同理、还是定位脱壳点,我们还是随便定位一个脱壳点LoadMethod 然后进行插桩

image-20220613220518548

1

2

3

4

5

6

7

8

9

10

11

12

13

14

//add

char dexfilepath[100]=0;

memset(dexfilepath,0,100);

sprintf(dexfilepath,"%d_%zu_LoadMethod.dex",getpid(),dex_file.Size());

int dexfd = open(dexfilepathm,O_CREAT|O_RDWR,666);

if(dexfd>0){

    int result = write(dexfd,dex_file.Begin(),dex_file.Size());

    if(result>0){

        close(dexfd);

        LOG(WARNING)<<"LoadMethod"<<dexfilepath;

    }

}

//add

同理我们在execute同样插桩此段代码,最后进行编译,编译成功

image-20220613172222202

然后给程序授权sdcard权限,再次启动应用,就可以看见脱取的dex文件就保存在sdcard目录下

image-20220613215956911

再次将sdcard下dex文件打开,这里我们已经看见了8732435这个文件,再次打开脱取成功

image-20220613172222202

4.反射脱壳法

反射脱壳法的核心思想就是利用前面我们提到的mCooike值

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

核心思路:反射 + mCookie

步骤:

1、找到加固apk的任一class,一般选择主Application或Activity

2、通过该类找到对应的Classloader

3、通过该Classloader找到BaseDexClassLoader

4、通过BaseDexClassLoader找到其字段DexPathList

5、通过DexPathList找到其变量Element数组dexElements

6、迭代该数组,该数组内部包含DexFile结构

7、通过DexFile获取其变量mCookie和mFileName

至此我们已经获取了mCookie

对该mCookie的解释:

#1、4.4以下好像,mCookie对应的是一个int值,该值是指向native层内存中的dexfile的指针

#2、5.0是一个long值,该值指向native层std::vector<const DexFile*>* 指针,注意这里有多个dex,你需要找到你要的

#3、8.0,该值也是一个long型的值,指向底层vector,但是vector下标0是oat文件,从1开始是dex文件

// 至于你手机是那个版本,如果没有落入我上面描述的,你需要自己看看代码

8、根据mCookie对应的值做转换,最终你能找到dexfile内存指针

9、把该指针转换为dexfile结构,通过findClassDef来匹配你所寻找的dex是你要的dex

10、dump写文件

综述mCookie是在native层就是dexfile的指针,我们利用反射原理来获取mCookie,从而就可以进行脱壳了,这里我们同样使用frida演示:

编写hook代码

image-20220613190231102

image-20220613190303491

我们看见了和上面同样大小的8841876_mCookie.dex

image-20220613190401266

使用工具打开,发现同样脱壳成功

image-20220613190438224

5.动态调试脱壳法

所谓动态调试法,核心原理和上面一样,就是我们在动态调试的过程中找到DexFile的起始地址和大小,然后执行脚本进行dump

首先选取脱壳点,我们还是选择DexFile::DexFile

image-20220613210130186

动态调试的步骤我在前面的文章中已经做了详细的讲解,不会的朋友去看前面的文章

首先我们启动android_server

image-20220613194111711

然后我们附加上进程

image-20220613194326114

image-20220613195349008

image-20220613203024990

然后我们打开libart.so,并定位到DexFile::DexFile

image-20220613210859021

然后在该函数下断点,然后F9过来

image-20220613211145356

此处我们就可以很明显看到X1就是我们的起始地址,X4是我们的偏移值

编写脚本进行hook

1

2

3

4

5

6

7

8

9

10

11

static main(void){   

    auto fp, begin, end, dexbyte;     

    fp = fopen("d:\\dump.dex", "wb+");     

    begin =  0x76FCD93020;   

    end = begin + 0x7EEC5600;

    for ( dexbyte = begin; dexbyte<end;dexbyte++)

    {

    fputc(Byte(dexbyte), fp);       

    }  

}

image-20220613214647627

直接运行run

然后我们查看dump.dex文件

image-20220613223330340

image-20220613215148251

我们可以发现这里是代理类,还没有到我们想要的dex,我们再次F9,再次到这里,地址再次改变,再次结合长度来计算,我们每次计算可以取小点值,先试一下

image-20220613215343895

发现还是不是,我们需要不停测试直到dump出dex为此

这里大家可以下去按照此方法尝试,或者换一个脱壳点来尝试

6.特殊API脱壳法

所谓特殊的API脱壳法就是通过Android自身提供的API来获得Dex,这主要是参考Fdex2,前面我们讲了Fdex2主要是利用Android7.0及以下提供了getDex()和getBytes()两个API,我们可以直接可以获得class对象,然后直接调用这两个API

image-20220613191047342

image-20220613191158377

编写hook代码:

image-20220613192251923

1

2

3

4

1.使用frida枚举所有Classloader

2.确定正确的ClassLoader并获取目标类的Class对象

3.通过Class对象获取得到dex对象

4.通过dex对象获取内存字节流并保存

然后我们查看程序的类对象,随便dump一个类对象

image-20220613191722932

image-20220613192447143

然后我们再次用工具打开

image-20220613192548342

image-20220613192659791

发现就可以成功的dump

通过这种方式,我们发现神奇的事我们还可以抽取壳的情况,比如我们之前为空类

image-20220613192926853

我们明显可以发现这里是采用了函数抽取的技术,一般的一代壳dump方案是无法解决抽取壳的,我们使用特殊API方法

image-20220613193028308

再次打开,成功dump

image-20220613193102209

这其实主要是抽取壳的一个回填时机的问题,这个详细放在以后抽取壳中讲解

六、实验总结

本文总结了当下dex整体加壳的基本原理,和常用的一些脱壳方案,并一一进行复现,还有一些文件监控法等,由于我平时用的很少就没列举了,复现实验过程中由于涉及到不同的实验,所以我用了Android 6.0 Android 7.0 Android 8.0三台机器进行实验,所以大家可以注意下对应的方法和其Android版本,这里彻底解决了整体加壳的脱壳方案,到这里可以掌握脱壳、抓包、Hook、反Hook、反调、反签等基本手段,这样在进行Android App漏洞挖掘过程中将事半功倍。后面我将继续讲解Android App漏洞中的XSS漏洞、Sql注入漏洞、文件上传漏洞、端口扫描漏洞、WebView漏洞等。

脱壳脚本相关样本会放在github,所有的脱壳脚本和工具和上传知识星球

github:github

七、参考文献

1

2

3

4

https://bbs.pediy.com/thread-252630.htm#msg_header_h2_4

https://bbs.pediy.com/thread-254555.htm#msg_header_h2_4

https://www.anquanke.com/post/id/221905?display=mobile

https://www.qj301.com/news/317.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/41444.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

opencv基础:几个常用窗口方法

开始说了一些opencv中的一些常用方法。 namedWindow方法 在OpenCV中&#xff0c;namedWindow函数用于创建一个窗口&#xff0c;并给它指定一个名字。这个函数的基本语法如下&#xff1a; import cv2cv2.namedWindow(窗口名称, 标识 )窗口名称&#xff1a;其实窗口名称&…

Azure创建自定义VM镜像

创建一个虚拟机&#xff0c;参考 https://blog.csdn.net/m0_48468018/article/details/132267096&#xff0c;入站端口开启80&#xff0c;22 进行远程远程连接 使用CLI命令部署NGINX,输入如下命令 sudo su apt-get update -y apt-get install nginx git -y最后的效果 4. 关闭…

非结构化数据库-MinIO基本集成

是什么 MinIO 是一个高性能的分布式对象存储服务&#xff0c;适合存储非结构化数据&#xff0c;如图片&#xff0c;音频&#xff0c;视频&#xff0c;日志等。对象文件最大可以达到5TB。 安装启动 mkdir -p /usr/local/minio cd /usr/local/minio# 下载安装包 wget https:/…

lvs-dr模式

一&#xff0c;数据包流向&#xff1a; 1&#xff0c;cilent向目标vip发出请求&#xff0c;dir接收&#xff0c;此时ip报头数据帧头信息。 2&#xff0c;dir根据负载均衡算法给rs&#xff08;rip&#xff09;&#xff0c;将rip所在网卡的mac地址作为目标的mac地址&#xff0c;发…

vscode如何汉化

首先我们到vscode官网下载 链接如下&#xff1a; Visual Studio Code - Code Editing. Redefined 根据自己需要的版本下载就好 下载并且安装完毕之后 运行vscode 然后按快捷键 CTRLSHIFTX 打开安装扩展界面 搜索简体中文 安装就可以了 谢谢大家观看

Vue3 —— watchEffect 高级侦听器

该文章是在学习 小满vue3 课程的随堂记录示例均采用 <script setup>&#xff0c;且包含 typescript 的基础用法 前言 Vue3 中新增了一种特殊的监听器 watchEffect&#xff0c;它的类型是&#xff1a; function watchEffect(effect: (onCleanup: OnCleanup) > void,o…

整理mongodb文档:find方法查询数据

个人博客 整理mongodb文档:find方法查询数据 求关注&#xff0c;求批评&#xff0c;求指出&#xff0c;如果哪儿不清晰&#xff0c;请指出来&#xff0c;谢谢 文章概叙 如题&#xff0c;本文讲的是如何用find查询数据&#xff0c;如何在数组、字段、对象中查询&#xff0c;以…

自然语言处理技术:NLP句法解析树与可视化方法

自然语言处理(Natural Language Processing,NLP)句法解析树是一种表示自然语言句子结构的图形化方式。它帮助将句子中的每个词汇和短语按照语法规则连接起来,形成一个树状结构,以便更好地理解句子的语法结构和含义。句法解析树对于理解句子的句法关系、依存关系以及语义角…

从入门到精通Python隧道代理的使用与优化

哈喽&#xff0c;Python爬虫小伙伴们&#xff01;今天我们来聊聊如何从入门到精通地使用和优化Python隧道代理&#xff0c;让我们的爬虫程序更加稳定、高效&#xff01;今天我们将对使用和优化进行一个简单的梳理&#xff0c;并且会提供相应的代码示例。 1. 什么是隧道代理&…

SpringCloud Gateway:status: 503 error: Service Unavailable

使用SpringCloud Gateway路由请求时&#xff0c;出现如下错误 yml配置如下&#xff1a; 可能的一种原因是&#xff1a;yml配置了gateway.discovery.locator.enabledtrue&#xff0c;此时gateway会使用负载均衡模式路由请求&#xff0c;但是SpringCloud Alibaba删除了Ribbon的…

无涯教程-Perl - setpwent函数

描述 此功能将枚举设置(或重置)到密码条目集的开头。应该在第一次调用getpwent之前调用此函数。 语法 以下是此函数的简单语法- setpwent返回值 此函数不返回任何值。 例 以下是显示其基本用法的示例代码- #!/usr/bin/perlwhile(($name, $passwd, $uid, $gid, $quota, …

C++写文件,直接写入结构体

C写文件&#xff0c;直接写入结构体 以前写文件都是写入字符串或者二进制再或者就是一些配置文件&#xff0c;今天介绍一下直接写入结构体&#xff0c;可以在软件参数较多的时候直接进行读写&#xff0c;直接将整个结构体写入和读取&#xff0c;看代码&#xff1a; #include&…

tomcat中的BIO与NIO发展

tomcat中的NIO发展 前言 Tomcat目前支持BIO&#xff08;阻塞 I/O&#xff09;、NIO&#xff08;非阻塞 I/O&#xff09;、AIO&#xff08;异步非阻塞式IO&#xff0c;NIO的升级版&#xff09;、APR&#xff08;Apache可移植运行库&#xff09;模型&#xff0c;本文主要介绍NI…

设计模式——适配器模式

引入实例 说起适配器其实在我们的生活中是非常常见的&#xff0c;比如&#xff1a;学校的宿舍的电压都比较低&#xff0c;而有的学生想使用大功率电器&#xff0c;宿舍的就会跳闸&#xff0c;然而如果你使用一个适配器&#xff08;变压器&#xff09;就可以使用了&#xff08;…

深入理解linux内核--块设备驱动程序

块设备的处理 块设备驱动程序上的每个操作都涉及很多内核组件&#xff1b;其中最重要的一些如图14-1所示。 例如&#xff0c;我们假设一个进程在某个磁盘文件上发出一个read()系统调用 ——我们将会看到处理write请求本质上采用同样的方式。 下面是内核对进程请求给予回应的一…

煤矿调度IP语音对讲广播模块一键求助对讲矿用调度通信系统SIP语音对讲求助终端

硬件接口描述 SV-2101VP/ SV-2103VP系列网络音频模块&#xff0c;所有外部连接采用端子&#xff0c;电源采用2.0mm的端子&#xff0c;网络采用标准RJ45连接器&#xff0c;其他都是1.25mm的连接器。 端口类型定义 P ———— 电源 AI ———— 模拟输入&#xff08;在这里是音…

微信小程序前后端开发快速入门(完结篇)

这篇是微信小程序前后端快速入门完结篇了&#xff0c;今天利用之前学习过的所有知识做一个新的项目「群登记助手v1.0」小程序。 整体技术架构&#xff1a;小程序原生前端小程序云开发。 经历了前面教程的学习&#xff0c;大家有了一定的基础&#xff0c;所以本次分享重心主要是…

Ubuntu服务器service版本初始化

下载 下载路径 官网&#xff1a;https://cn.ubuntu.com/ 下载路径&#xff1a;https://cn.ubuntu.com/download 服务器&#xff1a;https://cn.ubuntu.com/download/server/step1 点击下载&#xff08;22.04.3&#xff09;&#xff1a;https://cn.ubuntu.com/download/server…

【jwt】JWT原理,JWT是用来解决什么问题的,如何自定义生成JWT数据,并且实现jwt数据的解码

JWT&#xff1a; JSON Web Token 1. jwt概述 用户登录成功后&#xff0c;服务端 如何知道客户端的每次请求对应的是哪个用户呢&#xff1f;怎么做&#xff1a;目前有两种方式实现. 1.1. 一是通过sessionId的方式&#xff0c;登录成功后服务端返回sessionId给客户端&#xff0…

【数据结构】栈与队列

1 栈 1.1 栈的概念及结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶&#xff0c;另一端称为栈底。栈中的数据元素遵守后进先出 LIFO (Last In First Out) 的原则。 压栈&#xff1a;栈…