题目链接 https://cn.vjudge.net/problem/HYSBZ-2301
【题意】
对于给出的 n 个询问,每次求有多少个数对(x,y)(x,y) ,满足 a≤x≤b,c≤y≤da≤x≤b,c≤y≤d ,且 gcd(x,y)=k,gcd(x,y)gcd(x,y)=k,gcd(x,y) 函数为 xx 和 yy 的最大公约数。
【思路】
s1=∑x=1b∑y=1d[gcd(x,y)=k]s1=∑x=1b∑y=1d[gcd(x,y)=k]
s2=∑x=1a−1∑y=1d[gcd(x,y)=k]s2=∑x=1a−1∑y=1d[gcd(x,y)=k]
s3=∑x=1c−1∑y=1b[gcd(x,y)=k]s3=∑x=1c−1∑y=1b[gcd(x,y)=k]
s4=∑x=1a−1∑y=1c−1[gcd(x,y)=k]s4=∑x=1a−1∑y=1c−1[gcd(x,y)=k]
则答案为 ans=s1−s2−s3+s4ans=s1−s2−s3+s4
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;const int maxn=50005;bool vis[maxn];
int prim[maxn];
int mu[maxn];
ll sum[maxn];
int cnt;void get_mu(int n){mu[1]=1;for(int i=2;i<=n;i++){if(!vis[i]){prim[++cnt]=i;mu[i]=-1;}for(int j=1;j<=cnt && prim[j]*i<=n;j++){vis[prim[j]*i]=1;if(i%prim[j]==0) break;else mu[i*prim[j]]=-mu[i];}}for(int i=1;i<maxn;++i) sum[i]=sum[i-1]+mu[i];
}ll solve(int a,int b){if(a>b) swap(a,b);ll ans=0;for(int L=1,R;L<=a;L=R+1){R=min(a/(a/L),b/(b/L));ans+=(sum[R]-sum[L-1])*(a/L)*(b/L);}return ans;
}int main(){get_mu(maxn-1);int T;scanf("%d",&T);while(T--){int a,b,c,d,k;scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);ll s1=solve(b/k,d/k);ll s2=solve((a-1)/k,d/k);ll s3=solve((c-1)/k,b/k);ll s4=solve((a-1)/k,(c-1)/k);ll ans=s1-s2-s3+s4;printf("%lld\n",ans);}return 0;
}