Written with StackEdit.
Description
给定一个序列,初始为空。现在我们将\(1\)到\(N\)的数字插入到序列中,每次将一个数字插入到一个特定的位置。每插入一个数字,我们都想知道此时最长上升子序列长度是多少?
Input
第一行一个整数\(N\),表示我们要将\(1\)到\(N\)插入序列中,接下是\(N\)个数字,第\(k\)个数字\(X_k\),表示我们将\(k\)插入到位置\(X_k(0\leq X_k\leq k-1,1\leq k\leq N)\),
Output
\(N\)行,第\(i\)行表示\(i\)插入\(X_i\)位置后序列的最长上升子序列的长度是多少。
Sample Input
3
0 0 2
Sample Output
1
1
2
HINT
\(100\%\)的数据 \(n\leq100000\).
Solution
- 如果我们已经得到了最后的序列,我们可以用\(O(nlogn)\)的算法计算出\(LIS\),同时维护\(ans[i]\),表示以\(i\)作为结尾的上升子序列的最大长度.
- 再令\(g[i]\)表示最终要输出的答案,即插入\(i\)后的\(LIS\)长度.
- 因为整个序列是从小到大插入的,所以\(g[i]=max_{j=1}^{i}ans[j].\)
- 使用前缀和优化一下即可.
- 维护元素的插入可以写一颗平衡树.
#include<bits/stdc++.h>
using namespace std;
typedef long long LoveLive;
inline int read()
{int out=0,fh=1;char jp=getchar();while ((jp>'9'||jp<'0')&&jp!='-')jp=getchar();if (jp=='-'){fh=-1;jp=getchar();}while (jp>='0'&&jp<='9'){out=out*10+jp-'0';jp=getchar();}return out*fh;
}
const int MAXN=1e5+10;
int a[MAXN],qlen=0;
int n;
struct FhqTreap
{int x,y;struct node{int lson,rson,siz,weight,key;} treap[MAXN];int idx,root;FhqTreap(){x=0,y=0;idx=0;root=0;treap[0].key=0;treap[0].lson=treap[0].rson=0;treap[0].weight=0;treap[0].siz=0;}#define rt treap[o]#define ls treap[treap[o].lson]#define rs treap[treap[o].rson]inline int newnode(int key){int o=++idx;rt.lson=rt.rson=0;rt.siz=1;rt.weight=rand();rt.key=key;return o;}inline void pushup(int o){rt.siz=ls.siz+rs.siz+1;}int merge(int x,int y){if(!x || !y)return x+y;if(treap[x].weight<treap[y].weight){treap[x].rson=merge(treap[x].rson,y);pushup(x);return x;}else{treap[y].lson=merge(x,treap[y].lson);pushup(y);return y;}}void split(int &x,int &y,int k,int o){if(!o)x=y=0;else{if(k<=ls.siz){y=o;split(x,rt.lson,k,rt.lson);}else{x=o;split(rt.rson,y,k-ls.siz-1,rt.rson);}pushup(o);}}void ins(int key,int pos){split(x,y,pos,root);y=merge(newnode(key),y);root=merge(x,y);}void dfs(int o){if(!o)return;dfs(rt.lson);a[++qlen]=rt.key;dfs(rt.rson);}void getseq(){dfs(root);}
}T;
#define inf 0x7fffffff
int f[MAXN],ans[MAXN];
int main()
{srand(19260817);n=read();for(int i=1;i<=n;++i){int pos=read();T.ins(i,pos);}T.getseq();memset(f,0x7f,sizeof f);f[0]=-inf;for(int i=1;i<=n;++i){int t=upper_bound(f,f+n+1,a[i])-f;f[t]=a[i];ans[a[i]]=t;}for(int i=1;i<=n;++i)printf("%d\n",ans[i]=max(ans[i-1],ans[i]));puts("");return 0;
}