开始复习 AI 算法的基础–数学部分,主要是三方面的内容:
- 线性代数
- 概率论
- 微积分
参考内容如下:
- 《深度学习》
- https://github.com/scutan90/DeepLearning-500-questions
- https://github.com/sladesha/Reflection_Summary
本文是第一篇,线性代数部分的内容,主要是比较基础部分的学习笔记。
1. 线性代数
1.1 向量和矩阵
1.1.1 标量、向量、矩阵、张量之间的联系
标量(scalar)
一个标量表示一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组)。我们用斜体表示标量。标量通常被赋予小写的变量名称。 一般会明确标量属于哪种类型,比如定义实数标量时,会说“令 s∈Rs\in Rs∈R 表示一条线的斜率”。
向量(vector)
一个向量表示一组有序排列的数。通过次序中的索引,我们可以确定每个单独的数。通常我们赋予向量粗体的小写变量名称,比如xx。向量中的元素可以通过带脚标的斜体表示。向量XXX的第一个元素是X1X_1X1,第二个元素是X2X_2X2,以此类推。我们也会注明存储在向量中的元素的类型(实数、虚数等)。
一个向量如下所示,一个向量可以看作空间中的点,即每个元素可以表示不同坐标轴上的坐标。
x=[x1x2x3⋯xn]x = \left[ \begin{matrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ x_n \end{matrix} \right] x=⎣⎢⎢⎢⎢⎡x1x2x3⋯xn⎦⎥⎥⎥⎥⎤
矩阵(matrix)
矩阵是具有相同特征和纬度的对象的集合,表现为一张二维数据表。其意义是一个对象表示为矩阵中的一行,一个特征表示为矩阵中的一列,每个特征都有数值型的取值。通常会赋予矩阵粗体的大写变量名称,比如AAA。
一个矩阵的表示例子如下所示:
A=[A1,1A1,2A2,1A2,2]A = \left[ \begin{matrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ \end{matrix} \right] A=[A1,1A2,1A1,2A2,2]
转置是矩阵的重要操作之一,其转置是以对角线为轴的镜像,这条从左上角到右下角的对角线被称为主对角线,定义如下:
(AT)i,j=Aj,i(A^T){i,j} = A_{j,i} (AT)i,j=Aj,i
一个示例操作如下:
A=[A1,1A1,2A2,1A2,2A3,1A3,2]==>AT=[A1,1A2,1A3,1A1,2A2,2A3,2]A = \left[ \begin{matrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{matrix} \right] ==> A^T = \left[ \begin{matrix} A_{1,1} & A_{2,1} & A_{3, 1} \\ A_{1,2} & A_{2,2} & A_{3,2}\\ \end{matrix} \right] A=⎣⎡A1,1A2,1A3,1A1,2A2,2A3,2⎦⎤==>AT=[A1,1A1,2A2,1A2,2A3,1A3,2]
从一个 3×23\times 23×2 的矩阵变为了 $ 2\times 3$ 的矩阵。
张量(tensor)
在某些情况下,我们会讨论坐标超过两维的数组。一般地,一个数组中的元素分布在若干维坐标的规则网格中,我们将其称之为张量。使用 AAA 来表示张量“A”。张量AAA中坐标为(i,j,k)(i,j,k)(i,j,k)的元素记作A(i,j,k)A_{(i,j,k)}A(i,j,k)。
四者之间关系
(来自深度学习 500 问第一章数学基础)
标量是0阶张量,向量是一阶张量。举例:
标量就是知道棍子的长度,但是你不会知道棍子指向哪儿。
向量就是不但知道棍子的长度,还知道棍子指向前面还是后面。
张量就是不但知道棍子的长度,也知道棍子指向前面还是后面,还能知道这棍子又向上/下和左/右偏转了多少。
1.1.2 张量与矩阵的区别
- 从代数角度讲, 矩阵它是向量的推广。向量可以看成一维的“表格”(即分量按照顺序排成一排), 矩阵是二维的“表格”(分量按照纵横位置排列), 那么nnn阶张量就是所谓的nnn维的“表格”。 张量的严格定义是利用线性映射来描述。
- 从几何角度讲, 矩阵是一个真正的几何量,也就是说,它是一个不随参照系的坐标变换而变化的东西。向量也具有这种特性。
- 张量可以用3×3矩阵形式来表达。
- 表示标量的数和表示向量的三维数组也可分别看作1×1,1×3的矩阵。
1.1.3 矩阵和向量相乘结果
若使用爱因斯坦求和约定(Einstein summation convention),矩阵AAA, BBB相乘得到矩阵 CCC 可以用下式表示:
AB=C==>aik∗bkj=cijAB = C ==> a_{ik}*b_{kj}=c_{ij} AB=C==>aik∗bkj=cij
其中,aika_{ik}aik, bkjb_{kj}bkj, cijc_{ij}cij分别表示矩阵A,B,CA, B, CA,B,C的元素,kkk出现两次,是一个哑变量(Dummy Variables)表示对该参数进行遍历求和。
用一个例子表示就是:
$$
A=
\left[
\begin{matrix}
A_{1,1} & A_{1,2} \
A_{2,1} & A_{2,2} \
\end{matrix}
\right]
B =
\left[
\begin{matrix}
B_{1,1} & B_{1,2} \
B_{2,1} & B_{2,2} \
\end{matrix}
\right] \
A \times B = C =
\left[
\begin{matrix}
A_{1,1}\times B_{1,1}+A_{1,2}\times B_{2,1} & A_{1,1}\times B_{1,2}+A_{1,2}\times B_{2,2} \
A_{2,1}\times B_{1,1}+A_{2,2}\times B_{2,1} & A_{2,1}\times B_{1,2}+A_{2,2}\times B_{2,2} \
\end{matrix}
\right]
\left[
\begin{matrix}
C_{1,1} & C_{1,2} \
C_{2,1} & C_{2,2} \
\end{matrix}
\right]
$$
所以矩阵相乘有一个前提,矩阵 A 的列数必须和矩阵 B 的行数相等,也就是如果 A 的维度是 m×nm\times nm×n,B 的维度必须是 n×pn \times pn×p,相乘得到的 C 矩阵的维度就是 m×pm\times pm×p。
另外还有一种矩阵乘法,是矩阵对应元素相乘,这种称为元素对应乘积,或者 Hadamard 乘积,记为 A ⊙ B
而矩阵和向量相乘可以看成是矩阵相乘的一个特殊情况,例如:矩阵BBB是一个n×1n \times 1n×1的矩阵。
矩阵乘积满足这些定律:
- 服从分配率:A(B+C) = AB + AC
- 服从结合律:A(BC) = (AB)C
但是不服从交换律,即 AB 不一定等于 BA。
矩阵的乘积满足:(AB)T=ATBT(AB)^T = A^TB^T(AB)T=ATBT
两个相同维度的向量 x 和 y 的点积(dot product),可以看作矩阵乘积–xTyx^TyxTy。也就是说可以将矩阵乘积 C=ABC=ABC=AB 中计算 Ci,jC_{i,j}Ci,j的步骤看作是 A 的第 i 行和 B 的第 j 列之间的点积。毕竟,矩阵的每一行或者每一列都是一个向量。
而向量的点积是满足交换律的:
xTy=yTxx^Ty = y^Tx xTy=yTx
证明主要是根据:
- 两个向量的点积是标量
- 标量的转置也是自身
所以有:
xTy=(xTy)T=xyTx^Ty = (x^Ty)^T = xy^T xTy=(xTy)T=xyT
1.1.4 单位矩阵和逆矩阵
单位矩阵的定义如下,用 I 表示单位矩阵,任何向量和单位矩阵相乘,都不会改变,即:
∀x∈Rn,Inx=x(1-1-8)\forall x \in R^n, I_n x = x \tag{1-1-8} ∀x∈Rn,Inx=x(1-1-8)
单位矩阵的结构很简单,就是主对角线是 1,其他位置是 0,如下图所示的单位矩阵 I3I_3I3 :
[100010001]\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] ⎣⎡100010001⎦⎤
而逆矩阵记作 A−1A^{-1}A−1,其满足如下条件:
A−1A=InA^{-1}A=I_n A−1A=In
1.1.5 线性方程组和线性相关
现在有一个线性方程组,如下所示:
Ax=bAx = b Ax=b
其中,A∈Rm×nA\in R^{m\times n}A∈Rm×n 是已知的矩阵,b∈Rmb\in R^mb∈Rm 是已知的向量,然后 x∈Rnx\in R^nx∈Rn 是需要求解的未知向量。
这里根据矩阵相乘(x 相当于一个 n×1n\times 1n×1 的矩阵),可以将上述公式拓展开来:
A1,:x=b1==>A1,1x1+A1,2x2+⋯+A1,nxn=b1A2,:x=b2==>A2,1x1+A2,2x2+⋯+A2,nxn=b2⋯Am,:x=bm==>Am,1x1+Am,2x2+⋯+Am,nxn=bmA_{1,:}x = b_1 ==> A_{1,1}x_1 + A_{1,2}x_2+\cdots+A_{1,n}x_n = b_1 \\ A_{2,:}x = b_2 ==> A_{2,1}x_1 + A_{2,2}x_2+\cdots+A_{2,n}x_n = b_2 \\ \cdots \\ A_{m,:}x = b_m ==> A_{m,1}x_1 + A_{m,2}x_2+\cdots+A_{m,n}x_n = b_m \\ A1,:x=b1==>A1,1x1+A1,2x2+⋯+A1,nxn=b1A2,:x=b2==>A2,1x1+A2,2x2+⋯+A2,nxn=b2⋯Am,:x=bm==>Am,1x1+Am,2x2+⋯+Am,nxn=bm
在我们定义了逆矩阵后,那么可以这么求解:
Ax=bA−1Ax=A−1bInx=A−1bx=A−1bAx=b\\ A^{-1}Ax = A^{-1}b\\ I_nx = A^{-1}b \\ x = A^{-1}b Ax=bA−1Ax=A−1bInx=A−1bx=A−1b
所以求解的关键就是是否存在一个逆矩阵,并找到它。
当逆矩阵A−1A^{-1}A−1存在的时候,对每个向量 b 肯定恰好存在一个解。
但对于方程组来说,向量 b 的某些值,有可能不存在解,或者有无限多个解,不存在多于1 个解,但有限解的情况,比如 x 和 y 都是方程组的解,则有:
z=αx+(1−α)yz = \alpha x + (1-\alpha)y z=αx+(1−α)y
其中,α\alphaα 是任意实数,那么 z 也是方程组的解,这种组合是无限的,所以不存在有限解(多于 1 个)。
确定 Ax=b 是否有解,关键是确定向量 b 是否在 A 列向量的生成子空间中,这个特殊的生成子空间,被称为 A 的列空间或者 A 的值域。
一组向量的线性组合是指每个向量乘以对应标量系数之后的和,即 ∑iciv(i)\sum_i c_i v^{(i)}∑iciv(i)
一组向量的生成子空间是原始向量线性组合后所能抵达的点的集合。
那么为了让上述成立,应该让 A 的列空间构成整个 RmR^mRm 空间,如果这个空间某个点不在 A 的列空间,那么对应的 b 会使得方程无解。而要让其成立,**即要满足不等式 n≥mn\ge mn≥m **。
但该不等式只是方程对每个 b 有解的必要条件,非充分条件。因为存在一种情况,某些列向量可能是冗余的,比如一个 2×22\times 22×2的矩阵,如果两个列向量都是相同的,那该矩阵的列空间和它的一个列向量作为矩阵的列空间是一样的,并不能满足覆盖了整个 R2R^2R2 空间。
这种冗余也被称为线性相关,而如果一组向量中任意一个向量都不能表示为其他向量的线性组合,则这组向量称为线性无关。
所以,如果一个矩阵的列空间要覆盖整个 RmR^mRm,那么该矩阵必须包含至少一组m 个线性无关的向量,这才是对每个 b 都有解的充分必要条件。
此外,要让矩阵可逆,还必须保证 Ax=b 对每个 b 的取值至多只有一个解,那必须保证该矩阵至多有 m 个列向量,否则方程有不止一个解。
综上,那么矩阵就必须是方阵,也就是 m = n,并且所有列向量都是线性无关的。一个列向量都是线性无关的方阵被称为是奇异的。
假如 A 不是方阵或者不是奇异的方阵,也可能有解,但是不能通过逆矩阵去求解。
1.1.6 向量和矩阵的范数归纳
向量的范数(norm)
通常衡量向量的大小是通过范数来衡量的,形式上 LPL^PLP范数定义如下:
Lp=∥x⃗∥p=∑i=1N∣xi∣ppL_p=\Vert\vec{x}\Vert_p=\sqrt[p]{\sum_{i=1}^{N}|{x_i}|^p} Lp=∥x∥p=pi=1∑N∣xi∣p
这里 p≥1p\ge 1p≥1。
范数是将向量映射到非负数的函数,直观上来说,向量 x 的范数衡量从原点到点 x 的距离。
范数是满足下列性质的任意函数:
f(x)=0=>x=0f(x+y)≤f(x)+f(y)(三角不等式)∀α∈R,f(αx)=∣α∣f(x)f(x)=0=>x=0 \\ f(x+y)\le f(x)+f(y)(三角不等式)\\ \forall \alpha \in R, f(\alpha x) = |\alpha|f(x) f(x)=0=>x=0f(x+y)≤f(x)+f(y)(三角不等式)∀α∈R,f(αx)=∣α∣f(x)
定义一个向量为:a⃗=[−5,6,8,−10]\vec{a}=[-5, 6, 8, -10]a=[−5,6,8,−10]。任意一组向量设为x⃗=(x1,x2,...,xN)\vec{x}=(x_1,x_2,...,x_N)x=(x1,x2,...,xN)。其不同范数求解如下:
- 向量的1范数:向量的各个元素的绝对值之和,上述向量a⃗\vec{a}a的1范数结果就是:x = |-5|+|6|+|8|+|-10| = 29。
∥x⃗∥1=∑i=1N∣xi∣\Vert\vec{x}\Vert_1=\sum_{i=1}^N\vert{x_i}\vert ∥x∥1=i=1∑N∣xi∣
- 向量的2范数(欧几里得范数):向量的每个元素的平方和再开平方根,上述a⃗\vec{a}a的2范数结果就是:x=(−5)2+(6)2+(8)2+(−10)215x=\sqrt{(-5)^2+(6)^2+(8)^2+(-10)^2}15x=(−5)2+(6)2+(8)2+(−10)215。
∥x⃗∥2=∑i=1N∣xi∣2\Vert\vec{x}\Vert_2=\sqrt{\sum_{i=1}^N{\vert{x_i}\vert}^2} ∥x∥2=i=1∑N∣xi∣2
- 向量的负无穷范数:向量的所有元素的绝对值中最小的:上述向量a⃗\vec{a}a的负无穷范数结果就是:5。
∥x⃗∥−∞=min∣xi∣\Vert\vec{x}\Vert_{-\infty}=\min{|{x_i}|} ∥x∥−∞=min∣xi∣
- 向量的正无穷范数:向量的所有元素的绝对值中最大的:上述向量a⃗\vec{a}a的正无穷范数结果就是:10。
∥x⃗∥+∞=max∣xi∣\Vert\vec{x}\Vert_{+\infty}=\max{|{x_i}|} ∥x∥+∞=max∣xi∣
矩阵的范数
定义一个矩阵。
A=[−12−34−66]A = \left[ \begin{matrix} -1 & 2 & -3 \\ 4 & -6 & 6 \\ \end{matrix} \right] A=[−142−6−36]
任意矩阵定义为:Am×nA_{m\times n}Am×n,其元素为 aija_{ij}aij。
矩阵的范数定义为
∥A∥p:=supx≠0∥Ax∥p∥x∥p\Vert{A}\Vert_p :=\sup_{x\neq 0}\frac{\Vert{Ax}\Vert_p}{\Vert{x}\Vert_p} ∥A∥p:=x=0sup∥x∥p∥Ax∥p
当向量取不同范数时, 相应得到了不同的矩阵范数。
-
矩阵的1范数(列范数):先对矩阵的每一列元素的绝对值求和,再从中取个最大的(列和最大),上述矩阵AAA的1范数先得到[5,8,9][5,8,9][5,8,9],再取最大的最终结果就是:9。
∥A∥1=max1≤j≤n∑i=1m∣aij∣\Vert A\Vert_1=\max_{1\le j\le n}\sum_{i=1}^m|{a_{ij}}| ∥A∥1=1≤j≤nmaxi=1∑m∣aij∣ -
矩阵的2范数:矩阵ATAA^TAATA的最大特征值开平方根,上述矩阵AAA的2范数得到的最终结果是:10.0623。
∥A∥2=λmax(ATA)\Vert A\Vert_2=\sqrt{\lambda_{max}(A^T A)} ∥A∥2=λmax(ATA)
其中, λmax(ATA)\lambda_{max}(A^T A)λmax(ATA) 为 ATAA^T AATA 的特征值绝对值的最大值。
-
矩阵的无穷范数(行范数):矩阵的每一行上的元素绝对值先求和,再从中取个最大的,(行和最大),上述矩阵AAA的行范数先得到[6;16][6;16][6;16],再取最大的最终结果就是:16。
∥A∥∞=max1≤i≤m∑j=1n∣aij∣\Vert A\Vert_{\infty}=\max_{1\le i \le m}\sum_{j=1}^n |{a_{ij}}| ∥A∥∞=1≤i≤mmaxj=1∑n∣aij∣ -
矩阵的核范数:矩阵的奇异值(将矩阵svd分解)之和,这个范数可以用来低秩表示(因为最小化核范数,相当于最小化矩阵的秩——低秩),上述矩阵A最终结果就是:10.9287。
-
矩阵的L0范数:矩阵的非0元素的个数,通常用它来表示稀疏,L0范数越小0元素越多,也就越稀疏,上述矩阵AAA最终结果就是:6。
-
矩阵的L1范数:矩阵中的每个元素绝对值之和,它是L0范数的最优凸近似,因此它也可以表示稀疏,上述矩阵AAA最终结果就是:22。
-
矩阵的F范数:最常用的矩阵的范数,矩阵的各个元素平方之和再开平方根,它通常也叫做矩阵的L2范数,它的优点在于它是一个凸函数,可以求导求解,易于计算,上述矩阵A最终结果就是:10.0995。
∥A∥F=(∑i=1m∑j=1n∣aij∣2)\Vert A\Vert_F=\sqrt{(\sum_{i=1}^m\sum_{j=1}^n{| a_{ij}|}^2)} ∥A∥F=(i=1∑mj=1∑n∣aij∣2) -
矩阵的L21范数:矩阵先以每一列为单位,求每一列的F范数(也可认为是向量的2范数),然后再将得到的结果求L1范数(也可认为是向量的1范数),很容易看出它是介于L1和L2之间的一种范数,上述矩阵AAA最终结果就是:17.1559。
-
矩阵的 p范数
∥A∥p=(∑i=1m∑j=1n∣aij∣p)p\Vert A\Vert_p=\sqrt[p]{(\sum_{i=1}^m\sum_{j=1}^n{| a_{ij}|}^p)} ∥A∥p=p(i=1∑mj=1∑n∣aij∣p)
两个向量的点积可以用范数来表示:
xTy=∥x∥2∥y∥2cosθx^Ty =\Vert x \Vert_2 \Vert y \Vert_2 cos\theta xTy=∥x∥2∥y∥2cosθ
这里 θ\thetaθ 就是 x 和 y 之间的夹角。
1.1.7 一些特殊的矩阵和向量
对角矩阵:只在对角线上有非零元素,其他位置都是零。之前介绍的单位矩阵就是对角矩阵的一种;
对称矩阵:转置和自己相等的矩阵,即:A=ATA = A^TA=AT。
单位向量:具有单位范数的向量,也就是 ∥x∥2=1\Vert x \Vert_2 =1∥x∥2=1
向量正交:如果 xTy=0x^Ty=0xTy=0,那么就说向量 x 和 y 互相正交。如果向量不仅互相正交,范数还是 1,那么就称为标准正交。
正交矩阵:行向量和列向量是分别标准正交的方阵,即
ATA=AAT=IA^TA=AA^T=I ATA=AAT=I
也就是有:
A−1=ATA^{-1}=A^T A−1=AT
所以正交矩阵的一个优点就是求逆计算代价小。
1.1.8 如何判断一个矩阵为正定
判定一个矩阵是否为正定,通常有以下几个方面:
- 顺序主子式全大于0;
- 存在可逆矩阵CCC使CTCC^TCCTC等于该矩阵;
- 正惯性指数等于nnn;
- 合同于单位矩阵EEE(即:规范形为EEE)
- 标准形中主对角元素全为正;
- 特征值全为正;
- 是某基的度量矩阵。
所有特征值是非负数的矩阵称为半正定,而所有特征值是负数的矩阵称为负定,所有特征值是非正数的矩阵称为半负定。
正定性的用途
- Hessian矩阵正定性在梯度下降的应用
- 若Hessian正定,则函数的二阶偏导恒大于0,,函数的变化率处于递增状态,判断是否有局部最优解
- 在 svm 中核函数构造的基本假设
1.2 特征值和特征向量
1.2.1 特征值分解与特征向量
特征分解是使用最广的矩阵分解之一,矩阵分解可以得到一组特征值(eigenvalues)与特征向量(eigenvectors);
特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么。
如果说一个向量v⃗\vec{v}v是方阵AAA的特征向量,将一定可以表示成下面的形式:
Aν=λνA\nu = \lambda \nu Aν=λν
λ\lambdaλ为特征向量v⃗\vec{v}v对应的特征值。
特征值分解是将一个矩阵分解为如下形式:
A=Q∑Q−1A=Q\sum Q^{-1} A=Q∑Q−1
其中,QQQ是这个矩阵AAA的特征向量组成的正交矩阵,∑\sum∑是一个对角矩阵,每一个对角线元素就是一个特征值,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)。也就是说矩阵AAA的信息可以由其特征值和特征向量表示。
并非每个矩阵都可以分解成特征值和特征向量,但每个实对称矩阵都可以分解为实特征向量和实特征值。
1.2.2 奇异值分解
除了特征分解外,还有一种矩阵分解,称为奇异值分解(SVD),将矩阵分解为奇异值和奇异向量。通过奇异值分解,可以得到和特征分解相同类型的信息,但是,奇异值分解有更广泛的应用,每个实数矩阵都有一个奇异值分解,但不一定有特征分解,因为必须是方阵才有特征分解。
在特征分解中,我们将 A 重新写作:
A=Vdiag(λ)V−1A = Vdiag(\lambda)V^{-1} A=Vdiag(λ)V−1
其中,V 是特征向量构成的矩阵,λ\lambdaλ是特征值构成的向量,diag(λ)diag(\lambda)diag(λ)表示一个对角线都是特征值的对角矩阵。
奇异值分解的形式如下所示:
A=UDVTA = U D V^T A=UDVT
假如 A 是 m×nm\times nm×n 的矩阵,则 U 是 m×mm\times mm×m的矩阵,D 是 m×nm\times nm×n 的矩阵,V 是 n×nn\times nn×n 的矩阵。并且,矩阵 U 和 V 是正交矩阵,D 是对角矩阵,且不一定是方阵。
D 对角线上的元素就是 A 的奇异值,而 U 的列向量是左奇异向量,V 的列向量是右奇异向量。
可以套用和 A 相关的特征分解来解释其奇异值分解,A 的左奇异向量就是 AATAA^TAAT的特征向量,而右奇异向量就是ATAA^TAATA 的特征向量,A 的非零奇异值是AATAA^TAAT特征值的平方根,也是ATAA^TAATA特征值的平方根。
(来自深度学习 500 问的数学基础的内容)
那么奇异值和特征值是怎么对应起来的呢?我们将一个矩阵AAA的转置乘以AAA,并对ATAA^TAATA求特征值,则有下面的形式:
(ATA)V=λV(A^TA)V = \lambda V (ATA)V=λV
这里VVV就是上面的右奇异向量,另外还有:
σi=λi,ui=1σiAV\sigma_i = \sqrt{\lambda_i}, u_i=\frac{1}{\sigma_i}AV σi=λi,ui=σi1AV
这里的σ\sigmaσ就是奇异值,uuu就是上面说的左奇异向量。
奇异值σ\sigmaσ跟特征值类似,在矩阵∑\sum∑中也是从大到小排列,而且σ\sigmaσ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前rrr(rrr远小于m、nm、nm、n)个的奇异值来近似描述矩阵,即部分奇异值分解:
Am×n≈Um×r∑r×rVr×nTA_{m\times n}\approx U_{m \times r}\sum_{r\times r}V_{r \times n}^T Am×n≈Um×rr×r∑Vr×nT
右边的三个矩阵相乘的结果将会是一个接近于AAA的矩阵,在这儿,rrr越接近于nnn,则相乘的结果越接近于AAA。
欢迎关注我的公众号 –AI 算法笔记,每周分享算法学习笔记、论文阅读笔记,或者工具教程相关的 github 项目。