C++变长参数模板
C++11 加入了新的表示方法:
允许任意个数、任意类别的模板参数,同时也不需要在定义时将参数的个数固定。
template<typename... Ts> class Magic;
模板类 Magic 的对象,能够接受不受限制个数的 typename 作为模板的形式参数,例如下面的定义:
class Magic<int,std::vector<int>,std::map<std::string,std::vector<int>>> darkMagic;
既然是任意形式,所以个数为 0
的模板参数也是可以的:class Magic<> nothing;
。
如果不希望产生的模板参数个数为 0
,可以手动的定义至少一个模板参数:
template<typename Require, typename... Args> class Magic;
变长参数模板也能被直接调整到到模板函数上。传统 C 中的 printf
函数,
虽然也能达成不定个数的形参的调用,但其并非类别安全。
而 C++11 除了能定义类别安全的变长参数函数外,
还可以使类似 printf
的函数能自然地处理非自带类别的对象。
除了在模板参数中能使用 ...
表示不定长模板参数外,
函数参数也使用同样的表示法代表不定长参数,
这也就为我们简单编写变长参数函数提供了便捷的手段,例如:
template<typename... Args> void printf(const std::string &str, Args... args);
那么我们定义了变长的模板参数,如何对参数进行解包呢?
首先,我们可以使用 sizeof...
来计算参数的个数,:
template<typename ...Ts>
void magic(Ts... args)
{cout << sizeof...(args) << endl;
}
1. 递归模板函数
递归是非常容易想到的一种手段,也是最经典的处理方法。这种方法不断递归地向函数传递模板参数,进而达到递归遍历所有模板参数的目的:
#include <iostream>
template<typename T0>
void printf1(T0 value) {std::cout << value << std::endl;
}
template<typename T, typename... Ts>
void printf1(T value, Ts... args) {std::cout << value << std::endl;printf1(args...);
}
int main() {printf1(1, 2, "123", 1.1);return 0;
}
2. 变参模板展开
你应该感受到了这很繁琐,在 C++17 中增加了变参模板展开的支持,于是你可以在一个函数中完成 printf
的编写:
template<typename T0, typename... T>
void printf2(T0 t0, T... t) {std::cout << t0 << std::endl;if constexpr (sizeof...(t) > 0) printf2(t...);
}
事实上,有时候我们虽然使用了变参模板,却不一定需要对参数做逐个遍历,我们可以利用
std::bind
及完美转发等特性实现对函数和参数的绑定,从而达到成功调用的目的。
3. 初始化列表展开
递归模板函数是一种标准的做法,但缺点显而易见的在于必须定义一个终止递归的函数。
这里介绍一种使用初始化列表展开的黑魔法:
template<typename T, typename... Ts>
auto printf3(T value, Ts... args) {std::cout << value << std::endl;(void) std::initializer_list<T>{([&args] {std::cout << args << std::endl;}(), value)...};
}
在这个代码中,额外使用了 C++11 中提供的初始化列表以及 Lambda 表达式的特性(下一节中将提到)。
通过初始化列表,(lambda 表达式, value)...
将会被展开。由于逗号表达式的出现,首先会执行前面的 lambda 表达式,完成参数的输出。
为了避免编译器警告,我们可以将 std::initializer_list
显式的转为 void
。
C++ 17 中将变长参数这种特性进一步带给了表达式,考虑下面这个例子:
#include <iostream>
template<typename ... T>
auto sum(T ... t) {return (t + ...);
}
int main() {std::cout << sum(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) << std::endl;
}
非类型模板参数推导
前面我们主要提及的是模板参数的一种形式:类型模板参数。
template <typename T, typename U>auto add(T t, U u) { return t+u;}
其中模板的参数 T
和 U
为具体的类型。
但还有一种常见模板参数形式可以让不同字面量成为模板参数,即非类型模板参数:
template <typename T, int BufSize>
class buffer_t {
public:T& alloc();void free(T& item);
private:T data[BufSize];
}buffer_t<int, 100> buf; // 100 作为模板参数
在这种模板参数形式下,我们可以将 100
作为模板的参数进行传递。
在 C++11 引入了类型推导这一特性后,我们会很自然的问,既然此处的模板参数
以具体的字面量进行传递,能否让编译器辅助我们进行类型推导,
通过使用占位符 auto
从而不再需要明确指明类型?
幸运的是,C++17 引入了这一特性,我们的确可以 auto
关键字,让编译器辅助完成具体类型的推导,
例如:
template <auto value> void foo() {std::cout << value << std::endl;return;
}int main() {foo<10>(); // value 被推导为 int 类型
}