题意:
将\(n\)个数分成\(m\)段相邻区间,每段区间的长度为\(\left \lfloor \frac{n}{m} \right \rfloor\),从每段区间选一个最大值,要让所有的最大值之和大于\(k\)。求最小的\(m\)。
分析:
预处理RMQ,维护区间最大值。
然后二分\(m\),将每段区间最大值加起来判断即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;const int maxn = 200000 + 10;
const int logmaxn = 20;int n, k;
int a[maxn], d[maxn][logmaxn];void init() {for(int i = 0; i < n; i++) d[i][0] = a[i];for(int j = 1; (1<<j) <= n; j++)for(int i = 0; i + (1<<j) - 1 < n; i++)d[i][j] = max(d[i][j-1], d[i+(1<<(j-1))][j-1]);
}int query(int L, int R) {int k = 0;while((1<<(k+1)) <= R-L+1) k++;return max(d[L][k], d[R-(1<<k)+1][k]);
}bool check(int x) {int l = n / x;int tot = 0;for(int i = 0; i < x; i++) {tot += query(i * l, (i+1) * l - 1);if(tot > k) return true;}return false;
}int main()
{while(scanf("%d%d", &n, &k) == 2) {if(n < 0 && k < 0) break;int sum = 0, Max = 0;for(int i = 0; i < n; i++) {scanf("%d", a + i);sum += a[i];Max = max(Max, a[i]);}if(Max > k) { printf("1\n"); continue; }if(sum <= k) { printf("-1\n"); continue; }init();int ans = n, L = 1, R = n;while(L < R) {int mid = (L + R) / 2;if(!check(mid)) L = mid + 1;else R = mid;}printf("%d\n", L);}return 0;
}