Linux 设备驱动中的 I/O模型(二)—— 异步通知和异步I/O

 阻塞和非阻塞访问、poll() 函数提供了较多地解决设备访问的机制,但是如果有了异步通知整套机制就更加完善了。

      异步通知的意思是:一旦设备就绪,则主动通知应用程序,这样应用程序根本就不需要查询设备状态,这一点非常类似于硬件上“中断”的概念,比较准确的称谓是“信号驱动的异步I/O”。信号是在软件层次上对中断机制的一种模拟,在原理上,一个进程收到一个信号与处理器收到一个中断请求可以说是一样的。信号是异步的,一个进程不必通过任何操作来等待信号的到达,事实上,进程也不知道信号到底什么时候到达。

    阻塞I/O意味着移植等待设备可访问后再访问,非阻塞I/O中使用poll()意味着查询设备是否可访问,而异步通知则意味着设备通知自身可访问,实现了异步I/O。由此可见,这种方式I/O可以互为补充。


1、异步通知的概念和作用

影响:阻塞–应用程序无需轮询设备是否可以访问

           非阻塞–中断进行通知

即:由驱动发起,主动通知应用程序


2、linux异步通知编程

2.1 linux信号

作用:linux系统中,异步通知使用信号来实现

函数原型为:

void (*signal(int signum,void (*handler))(int)))(int)

原型比较难理解可以分解为

typedef void(*sighandler_t)(int);sighandler_t signal(int signum,sighandler_t handler);

第一个参数是指定信号的值,第二个参数是指定针对前面信号的处理函数


2.2 信号的处理函数(在应用程序端捕获信号)

signal()函数

[cpp] view plaincopy
在CODE上查看代码片派生到我的代码片
  1. //启动信号机制  
  2.    
  3. void sigterm_handler(int sigo)  
  4. {  
  5.     char data[MAX_LEN];  
  6.     int len;  
  7.     len = read(STDIN_FILENO,&data,MAX_LEN);  
  8.     data[len] = 0;  
  9.     printf("Input available:%s\n",data);  
  10.     exit(0);  
  11.  }  
  12.    
  13. int main(void)  
  14. {  
  15.    
  16.     int oflags;  
  17.   
  18.     //启动信号驱动机制  
  19.     signal(SIGIO,sigterm_handler);  
  20.     fcntl(STDIN_FILENO,F_SETOWN,getpid());  
  21.     oflags = fcntl(STDIN_FILENO,F_GETFL);  
  22.     fctcl(STDIN_FILENO,F_SETFL,oflags | FASYNC);  
  23.       
  24.     //建立一个死循环,防止程序结束       
  25.     whlie(1);  
  26.    
  27.     return 0;  
  28. }  

2.3 信号的释放 (在设备驱动端释放信号)

      为了是设备支持异步通知机制,驱动程序中涉及以下3项工作

(1)、支持F_SETOWN命令,能在这个控制命令处理中设置filp->f_owner为对应的进程ID。不过此项工作已由内核完成,设备驱动无须处理。
(2)、支持F_SETFL命令处理,每当FASYNC标志改变时,驱动函数中的fasync()函数得以执行。因此,驱动中应该实现fasync()函数
(3)、在设备资源中可获得,调用kill_fasync()函数激发相应的信号

     

     设备驱动中异步通知编程比较简单,主要用到一项数据结构和两个函数。这个数据结构是fasync_struct 结构体,两个函数分别是:

a -- 处理FASYNC标志变更

int fasync_helper(int fd,struct file *filp,int mode,struct fasync_struct **fa);

b -- 释放信号用的函数

void kill_fasync(struct fasync_struct **fa,int sig,int band);

和其他结构体指针放到设备结构体中,模板如下

[cpp] view plaincopy
在CODE上查看代码片派生到我的代码片
  1. struct xxx_dev{  
  2.     struct cdev cdev;  
  3.     ...  
  4.     struct fasync_struct *async_queue;  
  5.     //异步结构体指针  
  6. };  

      在设备驱动中的fasync()函数中,只需简单地将该函数的3个参数以及fasync_struct结构体指针的指针作为第四个参数传入fasync_helper()函数就可以了,模板如下

[cpp] view plaincopy
在CODE上查看代码片派生到我的代码片
  1. static int xxx_fasync(int fd,struct file *filp, int mode)  
  2. {  
  3.     struct xxx_dev *dev = filp->private_data;  
  4.     return fasync_helper(fd, filp, mode, &dev->async_queue);  
  5. }  
     在设备资源可获得时应该调用kill_fasync()函数释放SIGIO信号,可读时第三个参数为POLL_IN,可写时第三个参数为POLL_OUT,模板如下
[cpp] view plaincopy
在CODE上查看代码片派生到我的代码片
  1. static ssize_t xxx_write(struct file *filp,const char __user *buf,size_t count,loff_t *ppos)  
  2. {  
  3.     struct xxx_dev *dev = filp->private_data;  
  4.     ...  
  5.        
  6.     if(dev->async_queue)  
  7.    
  8.     kill_fasync(&dev->async_queue,GIGIO,POLL_IN);  
  9.     ...  
  10. }  

    最后在文件关闭时,要将文件从异步通知列表中删除
[cpp] view plaincopy
在CODE上查看代码片派生到我的代码片
  1. int xxx_release(struct inode *inode,struct file *filp)  
  2. {  
  3.     xxx_fasync(-1,filp,0);  
  4.    
  5.     ...  
  6.     return 0;  
  7.    
  8. }  

3、下面是个实例:

hello.c

[cpp] view plaincopy
在CODE上查看代码片派生到我的代码片
  1. #include <linux/module.h>  
  2. #include <linux/fs.h>  
  3. #include <linux/cdev.h>  
  4. #include <linux/device.h>  
  5. #include <asm/uaccess.h>  
  6. #include <linux/fcntl.h>  
  7.   
  8. static int major = 250;  
  9. static int minor=0;  
  10. static dev_t devno;  
  11. static struct class *cls;  
  12. static struct device *test_device;  
  13.   
  14. static char temp[64]={0};  
  15. static struct fasync_struct *fasync;  
  16.   
  17. static int hello_open (struct inode *inode, struct file *filep)  
  18. {  
  19.     return 0;  
  20. }  
  21. static int hello_release(struct inode *inode, struct file *filep)  
  22. {  
  23.     return 0;  
  24. }  
  25.   
  26. static ssize_t hello_read(struct file *filep, char __user *buf, size_t len, loff_t *pos)  
  27. {  
  28.     if(len>64)  
  29.     {  
  30.         len =64;  
  31.     }  
  32.     if(copy_to_user(buf,temp,len))  
  33.     {  
  34.         return -EFAULT;  
  35.     }     
  36.     return len;  
  37. }  
  38. static ssize_t hello_write(struct file *filep, const char __user *buf, size_t len, loff_t *pos)  
  39. {  
  40.     if(len>64)  
  41.     {  
  42.         len = 64;  
  43.     }  
  44.   
  45.     if(copy_from_user(temp,buf,len))  
  46.     {  
  47.         return -EFAULT;  
  48.     }  
  49.     printk("write %s\n",temp);  
  50.   
  51.     kill_fasync(&fasync, SIGIO, POLL_IN);  
  52.     return len;  
  53. }  
  54.   
  55. static int hello_fasync (int fd, struct file * file, int on)  
  56. {  
  57.     return fasync_helper(fd, file, on, &fasync);  
  58.   
  59. }  
  60. static struct file_operations hello_ops=  
  61. {  
  62.     .open = hello_open,  
  63.     .release = hello_release,  
  64.     .read =hello_read,  
  65.     .write=hello_write,  
  66. };  
  67. static int hello_init(void)  
  68. {  
  69.     int ret;      
  70.     devno = MKDEV(major,minor);  
  71.     ret = register_chrdev(major,"hello",&hello_ops);  
  72.   
  73.     cls = class_create(THIS_MODULE, "myclass");  
  74.     if(IS_ERR(cls))  
  75.     {  
  76.         unregister_chrdev(major,"hello");  
  77.         return -EBUSY;  
  78.     }  
  79.     test_device = device_create(cls,NULL,devno,NULL,"hello");//mknod /dev/hello  
  80.     if(IS_ERR(test_device))  
  81.     {  
  82.         class_destroy(cls);  
  83.         unregister_chrdev(major,"hello");  
  84.         return -EBUSY;  
  85.     }     
  86.     return 0;  
  87. }  
  88. static void hello_exit(void)  
  89. {  
  90.     device_destroy(cls,devno);  
  91.     class_destroy(cls);   
  92.     unregister_chrdev(major,"hello");  
  93.     printk("hello_exit \n");  
  94. }  
  95. MODULE_LICENSE("GPL");  
  96. module_init(hello_init);  
  97. module_exit(hello_exit);  

test.c

[cpp] view plaincopy
在CODE上查看代码片派生到我的代码片
  1. #include <sys/types.h>  
  2. #include <sys/stat.h>  
  3. #include <fcntl.h>  
  4. #include <stdio.h>  
  5. #include <signal.h>  
  6.   
  7. static int fd,len;  
  8. static char buf[64]={0};  
  9.   
  10. void func(int signo)  
  11. {  
  12.     printf("signo %d \n",signo);  
  13.     read(fd,buf,64);  
  14.     printf("buf=%s \n",buf);      
  15. }  
  16.   
  17. main()  
  18. {  
  19.   
  20.     int flage,i=0;  
  21.   
  22.     fd = open("/dev/hello",O_RDWR);  
  23.     if(fd<0)  
  24.     {  
  25.         perror("open fail \n");  
  26.         return ;  
  27.     }  
  28.   
  29.   
  30.     fcntl(fd,F_SETOWN,getpid());  
  31.     flage = fcntl(fd,F_GETFL);  
  32.     fcntl(fd,F_SETFL,flage|FASYNC);  
  33.   
  34.     signal(SIGIO,func);  
  35.   
  36.     while(1)  
  37.     {  
  38.   
  39.         sleep(1);  
  40.         printf("%d\n",i++);  
  41.     }  
  42.   
  43.     close(fd);  
  44. }  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/402218.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

判断链表是否有环

链表有环的情况一般是链表的尾指向前面的节点而不是null&#xff0c;如head->node1->node2->node3->node4->tail->node2&#xff0c;该链表存在环。判断环是否存在可以借助两个指针&#xff0c;一个指针每次迭代只移动一步&#xff0c;第二个指针每次迭代移动…

Python 爬虫进阶五之多线程的用法

我们之前写的爬虫都是单个线程的&#xff1f;这怎么够&#xff1f;一旦一个地方卡到不动了&#xff0c;那不就永远等待下去了&#xff1f;为此我们可以使用多线程或者多进程来处理。 首先声明一点&#xff01; 多线程和多进程是不一样的&#xff01;一个是 thread 库&#xff0…

Tomcat8 连接池

1、所有的tomcat项目共用一个连接池配置 1.1 修改conf->context.xml文件&#xff0c;在Context节点下配置 <Resource name"jdbc/myDataSource" type"javax.sql.DataSource" driverClassName"com.microsoft.sqlserver.jdbc.SQLServerDriver"…

Linux 设备驱动中的 I/O模型(一)—— 阻塞和非阻塞I/O

在前面学习网络编程时&#xff0c;曾经学过I/O模型 Linux 系统应用编程——网络编程&#xff08;I/O模型&#xff09;&#xff0c;下面学习一下I/O模型在设备驱动中的应用。 回顾一下在Unix/Linux下共有五种I/O模型&#xff0c;分别是&#xff1a; a -- 阻塞I/O b -- 非阻塞I/O…

3.改变 HTML 内容

①xdocument.getElementById("demo") //查找元素 ②x.innerHTML"Hello JavaScript"; //改变内容 <!DOCTYPE html><html><body> <h1>我的第一段 JavaScript</h1> <p id"demo">JavaScript 能改变 HTML 元素的…

Python 爬虫进阶六之多进程的用法

python 中的多线程其实并不是真正的多线程&#xff0c;并不能做到充分利用多核 CPU 资源。 如果想要充分利用&#xff0c;在 python 中大部分情况需要使用多进程&#xff0c;那么这个包就叫做 multiprocessing。 借助它&#xff0c;可以轻松完成从单进程到并发执行的转换。mult…

DEFINE_PER_CPU

转自 http://www.unixresources.net/linux/clf/linuxK/archive/00/00/47/91/479165.html 首先&#xff0c;在arch/i386/kernel/vmlinux.lds中有 /*will be free after init*/ .ALIGN(4096); __init_begin.; /*省略*/ .ALIGN(32); __per_cpu_start.; .data.percpu:{*(.data.perc…

HDU 1213 How Many Tables(并查集模板)

http://acm.hdu.edu.cn/showproblem.php?pid1213 题意&#xff1a; 这个问题的一个重要规则是&#xff0c;如果我告诉你A知道B&#xff0c;B知道C&#xff0c;这意味着A&#xff0c;B&#xff0c;C知道对方&#xff0c;所以他们可以留在一个桌子。例如&#xff1a;如果我告诉你…

Linux 设备驱动的并发控制

Linux 设备驱动中必须要解决的一个问题是多个进程对共享的资源的并发访问&#xff0c;并发的访问会导致竞态&#xff0c;即使是经验丰富的驱动工程师也常常设计出包含并发问题bug 的驱动程序。 一、基础概念 1、Linux 并发相关基础概念 a -- 并发&#xff08;concurrency&#…

Python爬虫入门一综述

网络爬虫是一种自动抓取万维网信息的程序。 学习python爬虫&#xff0c;需要学习以下知识&#xff1a; python基础python中的urllib和urllib2库的用法python正则表达式python爬虫框架scrapypython爬虫高级功能 1.python基础 廖雪峰python教程 2.python urllib和urllib2库使…

Python爬虫学习二爬虫基础了解

1.什么是爬虫 爬虫就是进入网页自动获取数据的程序。当它进入一个网页时&#xff0c;将网页上需要的数据下载下来&#xff0c;并跟踪网页上的其他链接&#xff0c;进入新的页面下载数据&#xff0c;并继续跟踪链接下载数据。 2.URL URL&#xff0c;即统一资源定位符&#xf…

第三章:多坐标系

第一节&#xff1a;为什么要有多坐标系 当我们使用一个坐标系来描绘整个场景的时候&#xff0c;场景中的任意点都可以用该坐标系描述&#xff0c;此时如果有一只羊一遍摇动着耳朵&#xff0c;一边走&#xff0c;这个时候如果进行坐标的转换会发现异常的麻烦&#xff0c;此时如果…

Linux 设备驱动开发 —— 设备树在platform设备驱动中的使用

关与设备树的概念&#xff0c;我们在Exynos4412 内核移植&#xff08;六&#xff09;—— 设备树解析 里面已经学习过&#xff0c;下面看一下设备树在设备驱动开发中起到的作用 Device Tree是一种描述硬件的数据结构&#xff0c;设备树源(Device Tree Source)文件&#xff08;以…

Python爬虫入门三urllib库基本使用

urllib是一个收集了多个涉及了URL的模块的包&#xff1a; URL获取网页 urllibtest.pyimport urllib2 response urllib2.urlopen(http://www.baidu.com) print(response.read())运行结果&#xff1a; C:\Python27\python.exe H:/spiderexercise/spidertest/urllibtest.py &l…

使用老毛桃U盘重装Windows10系统

使用老毛桃U盘启动盘重装Windows10系统&#xff0c;这个方法很常用&#xff0c;相比较一些别的方法去重装系统&#xff0c;这个方法更方便更简单&#xff0c;容易入手和掌握。 在重装系统前&#xff0c;先去微软的官网把Windows10的ISO镜像文件下载下来&#xff0c;去别的网站下…

Android 网络通信框架Volley简介(Google IO 2013)

1. 什么是Volley 在这之前&#xff0c;我们在程序中需要和网络通信的时候&#xff0c;大体使用的东西莫过于AsyncTaskLoader&#xff0c;HttpURLConnection&#xff0c;AsyncTask&#xff0c;HTTPClient&#xff08;Apache&#xff09;等&#xff0c;今年的Google I/O 2013上&…

Linux 设备驱动开发 —— platform设备驱动应用实例解析

前面我们已经学习了platform设备的理论知识Linux 设备驱动开发 —— platform 设备驱动 &#xff0c;下面将通过一个实例来深入我们的学习。 一、platform 驱动的工作过程 platform模型驱动编程&#xff0c;需要实现platform_device(设备)与platform_driver&#xff08;驱动&am…

python使用proxy

使用urllib proxies {http: http://host:port} resp urllib.urlopen(url, proxiesproxies) content resp.read()使用urllib2 import urllib2enable_proxy True proxy_handler urllib2.ProxyHandler({"http" : your_proxy}) null_proxy_handler urllib2.Proxy…

There is no public key available for the following key IDs:3B4FE6ACC0B21F32

ubuntu 运行完sudo apt-get update之后&#xff0c;提示 W: There is no public key available for the following key IDs: 3B4FE6ACC0B21F32 解决方法是执行: sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 3B4FE6ACC0B21F32 参考 linux下apt-get出现“no …

Unichar, char, wchar_t

之前总结了一些关于字符表示&#xff0c;以及字符串的知识。 现在在看看一些关于编译器支持的知识。 L"" Prefix 几乎所有的编译器都支持L“” prefix&#xff0c;一个字符串如果带有L“”prefix&#xff0c;意味着这个字符串中的字符都被作为wide char存储&#xf…