Linux进程状态解析之R、S、D、T、Z、X

Linux进程状态解析之R、S、D、T、Z、X;Linux是一个多用户,多任务的系统,可以同时运;众所周知,现在的分时操作系统能够在一个CPU上运;在linux系统中,每个被运行的程序实例对应一个;Linux进程状态:R(TASK_RUNNING;只有在该状态的进程才可能在CPU上运行;很多操作系统教科书将正在CPU上执行的进程定义为;Linux进程状态:S

Linux进程状态解析之R、S、D、T、Z、X

Linux是一个多用户,多任务的系统,可以同时运行多个用户的多个程序,就必然会产生很多的进程,而每个进程会有不同的状态。

众所周知,现在的分时操作系统能够在一个CPU上运行多个程序,让这些程序表面上看起来是在同时运行的。linux就是这样的一个操作系统。

在linux系统中,每个被运行的程序实例对应一个或多个进程。linux内核需要对这些进程进行管理,以使它们在系统中“同时”运行。linux内核对进程的这种管理分两个方面:进程状态管理,和进程调度。


【1】Linux进程状态:R (TASK_RUNNING),可执行状态。

只有在该状态的进程才可能在CPU上运行。而同一时刻可能有多个进程处于可执行状态,这些进程的task_struct结构(进程控制块)被放入对应CPU的可执行队列中(一个进程最多只能出现在一个CPU的可执行队列中)。

进程调度器的任务就是从各个CPU的可执行队列中分别选择一个进程在该CPU上运行。

很多操作系统教科书将正在CPU上执行的进程定义为RUNNING状态、而将可执行但是尚未被调度执行的进程定义为READY状态,这两种状态在linux下统一为 TASK_RUNNING状态。 只要可执行队列不为空,其对应的CPU就不能偷懒,就要执行其中某个进程。一般称此时的CPU“忙碌”。对应的,CPU“空闲”就是指其对应的可执行队列为空,以致于CPU无事可做。 有人问,为什么死循环程序会导致CPU占用高呢?因为死循环程序基本上总是处于TASK_RUNNING状态(进程处于可执行队列中)。除非一些非常极端情况(比如系统内存严重紧缺,导致进程的某些需要使用的页面被换出,并且在页面需要换入时又无法分配到内存??),否则这个进程不会睡眠。所以 CPU的可执行队列总是不为空(至少有这么个进程存在),CPU也就不会“空闲”。


【2】Linux进程状态:S (TASK_INTERRUPTIBLE),可中断的睡眠状态。

处于这个状态的进程因为等待某某事件的发生(比如等待socket连接、等待信号量),而被挂起。这些进程的task_struct结构被放入对应事件的等待队列中。当这些事件发生时(由外部中断触发、或由其他进程触发),对应的等待队列中的一个或多个进程将被唤醒。 通过ps命令我们会看到,一般情况下,进程列表中的绝大多数进程都处于TASK_INTERRUPTIBLE状态(除非机器的负载很高)。毕竟CPU就这么一两个,进程动辄几十上百个,如果不是绝大多数进程都在睡眠,CPU又怎么响应得过来。


【3】Linux进程状态:D (TASK_UNINTERRUPTIBLE),不可中断的睡眠状态。

与TASK_INTERRUPTIBLE状态类似,进程处于睡眠状态,但是此刻进程是不可中断的。不可中断,指的并不是CPU不响应外部硬件的中断,而是指进程不响应异步信号。绝大多数情况下,进程处在睡眠状态时,总是应该能够响应异步信号的。否则你将惊奇的发现,kill -9竟然杀不死一个正在睡眠的进程了!于是我们也很好理解,为什么ps命令看到的进程几乎不会出现TASK_UNINTERRUPTIBLE状态,而总是TASK_INTERRUPTIBLE状态。

而TASK_UNINTERRUPTIBLE状态存在的意义就在于,内核的某些处理流程是不能被打断的。如果响应异步信号,程序的执行流程中就会被插入一段用于处理异步信号的流程(这个插入的流程可能只存在于内核态,也可能延伸到用户态),于是原有的流程就被中断了。(参见《linux内核异步中断浅析》)在进程对某些硬件进行操作时(比如进程调用read系统调用对某个设备文件进行读操作,而read系统调用最终执行到对应设备驱动的代码,并与对应的物理设备进行交互),可能需要使用TASK_UNINTERRUPTIBLE状态对进程进行保护,以避免进程与设备交互的过程被打断,造成设备陷入不可控的状态。这种情况下的TASK_UNINTERRUPTIBLE状态总是非常短暂的,通过ps命令基本上不可能捕捉到。

linux系统中也存在容易捕捉的TASK_UNINTERRUPTIBLE状态。执行vfork系统调用后,父进程将进入TASK_UNINTERRUPTIBLE状态,直到子进程调用exit或exec(参见《神奇的vfork》)。通过下面的代码就能得到处于TASK_UNINTERRUPTIBLE状态的进程:

#include <unistd.h>

void main()

 {

        if (!vfork()) sleep(100);

}

编译运行,然后ps一下:

kouu@kouu-one:~/test$ ps -ax | grep a\.out

4371 pts/0 D+ 0:00 ./a.out

4372 pts/0 S+ 0:00 ./a.out

4374 pts/1 S+ 0:00 grep a.out

然后我们可以试验一下TASK_UNINTERRUPTIBLE状态的威力。不管kill还是kill -9,这个TASK_UNINTERRUPTIBLE状态的父进程依然屹立不倒。



【4】Linux进程状态:T (TASK_STOPPED or TASK_TRACED),暂停状态或跟踪状态。

向进程发送一个SIGSTOP信号,它就会因响应该信号而进入TASK_STOPPED状态(除非该进程本身处于TASK_UNINTERRUPTIBLE状态而不响应信号)。(SIGSTOP与SIGKILL信号一样,是非常强制的。不允许用户进程通过signal系列的系统调用重新设置对应的信号处理函数。)向进程发送一个SIGCONT信号,可以让其从TASK_STOPPED状态恢复到TASK_RUNNING状态。

当进程正在被跟踪时,它处于TASK_TRACED这个特殊的状态。“正在被跟踪”指的是进程暂停下来,等待跟踪它的进程对它进行操作。比如在gdb中对被跟踪的进程下一个断点,进程在断点处停下来的时候就处于TASK_TRACED状态。而在其他时候,被跟踪的进程还是处于前面提到的那些状态。

对于进程本身来说,TASK_STOPPED和TASK_TRACED状态很类似,都是表示进程暂停下来。而TASK_TRACED状态相当于在TASK_STOPPED之上多了一层保护,处于TASK_TRACED状态的进程不能响应SIGCONT信号而被唤醒。只能等到调试进程通过ptrace系统调用执行PTRACE_CONT、PTRACE_DETACH等操作(通过ptrace系统调用的参数指定操作),或调试进程退出,被调试的进程才能恢复TASK_RUNNING状态。



【5】Linux进程状态:Z (TASK_DEAD - EXIT_ZOMBIE),退出状态,进程成为僵尸进程。 进程在退出的过程中,处于TASK_DEAD状态。

在这个退出过程中,进程占有的所有资源将被回收,除了task_struct结构(以及少数资源)以外。于是进程就只剩下task_struct这么个空壳,故称为僵尸。之所以保留task_struct,是因为task_struct里面保存了进程的退出码、以及一些统计信息。而其父进程很可能会关心这些信息。比如在shell中,$?变量就保存了最后一个退出的前台进程的退出码,而这个退出码往往被作为if语句的判断条件。当然,内核也可以将这些信息保存在别的地方,而将task_struct结构释放掉,以节省一些空间。但是使用task_struct结构更为方便,因为

在内核中已经建立了从pid到task_struct查找关系,还有进程间的父子关系。释放掉task_struct,则需要建立一些新的数据结构,以便让父进程找到它的子进程的退出信息。 父进程可以通过wait系列的系统调用(如wait4、waitid)来等待某个或某些子进程的退出,并获取它的退出信息。然后wait系列的系统调用会顺便将子进程的尸体(task_struct)也释放掉。子进程在退出的过程中,内核会给其父进程发送一个信号,通知父进程来“收尸”。这个信号默认是SIGCHLD,但是在通过clone系统调用创建子进程时,可以设置这个信号。 通过下面的代码能够制造一个EXIT_ZOMBIE状态的进程:

#include <unistd.h>

void main() {

if (fork())

while(1) sleep(100);

}

编译运行,然后ps一下:

ps -ax | grep a\.out

10410 pts/0 S+ 0:00 ./a.out

10411 pts/0 Z+ 0:00 [a.out] <defunct>

10413 pts/1 S+ 0:00 grep a.out

只要父进程不退出,这个僵尸状态的子进程就一直存在。那么如果父进程退出了呢,谁又来给子进程“收尸”?当进程退出的时候,会将它的所有子进程都托管给别的进程(使之成为别的进程的子进程)。托管给谁呢?可能是退出进程所在进程组的下一个进程(如果存在的话),或者是1号进程。所以每个进程、每时每刻都有父进程存在。除非它是1号进程。 1号进程,pid为1的进程,又称init进程。linux系统启动后,第一个被创建的用户态进程就是init进程。它有两项使命:1、执行系统初始化脚本,创建一系列的进程(它们都是init进程的子孙);2、在一个死循环中等待其子进程的退出事件,并调用waitid系统调用来完成“收尸”工作;init进程不会被暂停、也不会被杀死(这是由内核来保证的)。它在等待子进程退出的过程中处于TASK_INTERRUPTIBLE状态,“收尸”过程中则处于TASK_RUNNING状态。


【6】Linux进程状态:X (TASK_DEAD - EXIT_DEAD),退出状态,进程即将被销毁。

而进程在退出过程中也可能不会保留它的task_struct。比如这个进程是多线程程序中被detach过的进程(进程?线程?参见《linux线程浅析》)。或者父进程通过设置SIGCHLD信号的handler为SIG_IGN,显式的忽略了SIGCHLD信号。(这是posix的规定,尽管子进程的退出信号可以被设置为SIGCHLD以外的其他信号。)此时,进程将被置于EXIT_DEAD退出状态,这意味着接下来的代码立即就会将该进程彻底释放。所以EXIT_DEAD状态是非常短暂的,几乎不可能通过ps命令捕捉到。

进程的初始状态

进程是通过fork系列的系统调用(fork、clone、vfork)来创建的,内核(或内核模块)也可以通过kernel_thread函数创建内核进程。这些创建子进程的函数本质上都完成了相同的功能——将调用进程复制一份,得到子进程。(可以通过选项参数来决定各种资源是共享、还是私有。)那么既然调用进程处于TASK_RUNNING状态(否则,它若不是正在运行,又怎么进行调用?),则子进程默认也处于TASK_RUNNING状态。另外,在系统调用调用clone和内核函数kernel_thread也接受CLONE_STOPPED选项,从而将子进程的初始状态置为 TASK_STOPPED。

进程状态变迁

进程自创建以后,状态可能发生一系列的变化,直到进程退出。而尽管进程状态有好几种,但是进程状态的变迁却只有两个方向——从TASK_RUNNING状态变为非TASK_RUNNING状态、或者从非TASK_RUNNING状态变为TASK_RUNNING状态。也就是说,如果给一个TASK_INTERRUPTIBLE状态的进程发送SIGKILL信号,这个进程将先被唤醒(进入TASK_RUNNING状态),然后再响应SIGKILL信号而退出(变为TASK_DEAD状态)。并不会从TASK_INTERRUPTIBLE状态直接退出。

进程从非TASK_RUNNING状态变为TASK_RUNNING状态,是由别的进程(也可能是中断处理程序)执行唤醒操作来实现的。执行唤醒的进程设置被唤醒进程的状态为TASK_RUNNING,然后将其task_struct结构加入到某个CPU的可执行队列中。于是被唤醒的进程将有机会被调度执行。

而进程从TASK_RUNNING状态变为非TASK_RUNNING状态,则有两种途径:1、响应信号而进入TASK_STOPED状态、或TASK_DEAD状态;2、执行系统调用主动进入TASK_INTERRUPTIBLE状态(如nanosleep系统调用)、或TASK_DEAD状态(如exit系统调用);或由于执行系统调用需要的资源得不到满足,而进入TASK_INTERRUPTIBLE状态或TASK_UNINTERRUPTIBLE状态(如select系统调用)。显然,这两种情况都只能发生在进程正在CPU上执行的情况下。

.进程的三种基本状态

进程在运行中不断地改变其运行状态。通常,一个运行进程必须具有以下三种基本状态。 就绪(Ready)状态

当进程已分配到除CPU以外的所有必要的资源,只要获得处理机便可立即执行,这时的进程状态称为就绪状态。

执行(Running)状态

当进程已获得处理机,其程序正在处理机上执行,此时的进程状态称为执行状态。 阻塞(Blocked)状态

正在执行的进程,由于等待某个事件发生而无法执行时,便放弃处理机而处于阻塞状态。引起进程阻塞的事件可有多种,例如,等待I/O完成、申请缓冲区不能满足、等待信件(信号)等。

2.进程三种状态间的转换

一个进程在运行期间,不断地从一种状态转换到另一种状态,它可以多次处于就绪状态和执行状态,也可以多次处于阻塞状态。图3_4描述了进程的三种基本状态及其转换。

(1) 就绪→执行处于就绪状态的进程,当进程调度程序为之分配了处理机后,该进程便由就绪状态转变成执行状态。

(2) 执行→就绪处于执行状态的进程在其执行过程中,因分配给它的一个时间片已用完而不得不让出处理机,于是进程从执行状态转变成就绪状态。

(3) 执行→阻塞正在执行的进程因等待某种事件发生而无法继续执行时,便从执行状态变成阻塞状态。

(4) 阻塞→就绪处于阻塞状态的进程,若其等待的事件已经发生,于是进程由阻塞状态转变为就绪状态。

例:

题目:某系统的状态转换图如图所示。

(1)分别说明引起状态转换1、2、3、4的原因,并各举一个事件。(2)为什么在转换图中没有就绪到阻塞和阻塞到运行的转换方向?(3)一个进程的状态变换能够引起另一个进程的状态变换,说明下列因果变迁是否可能发生,原因是什么?(a)3→1(b)2→1(c)3→2(d)3→4(e)4→1

答: (1)1:就绪->执行, 当前运行进程阻塞,调度程序选一个优先权最高的进程占有处理机;2:执行->就绪, 当前运行进程时间片用完;3:执行->阻塞,当前运行进程等待键盘输入,进入了睡眠状态。4:阻塞->就绪,I/O操作完成,被中断处理程序唤醒。

(2)就绪进程没有占有处理机,也即没有经过运行,其状态就不会改变。阻塞状态进程唤醒后先要进入就绪队列,才会被调度程序选中,进入了执行状态。

(3)(a) 3→1: 可能,当前运行进程阻塞,调度程序选一个优先级最高的进程占有处理机。(b)2→1:可能,当前运行进程优先级下降,调度程序选一个优先级最高的进程占有处理机。(c)3→2: 不可能,占有CPU的一个进程不能同时进入两个状态;在单CPU的系统中,状态3发生后,cpu没有执行进程,故不会发生状态转换2。(d)3→4:一般不可能,不相干的两个事件。状态转换3是由于运行进程等待资源而发生的,这并不会使得阻塞队列中的进程得到资源而进入就绪队列。但在Unix中,当系统的0#进程因runin标志而睡眠时,有(在内存)进程睡眠,就会唤醒0#进程,使其进入就绪状态,以便将该进程和在盘交换区就绪进程交换位置。(e)4→1:一般无关,但当就绪队列为空时,一个进程被唤醒转入就绪队列后,调度程序使该进程占有处理机(但是同一个进程)。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/401805.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Win8 HTML5与JS编程学习笔记(二)

近期一直受到win8应用的Grid布局困扰&#xff0c;经过了半下午加半个晚上的奋斗&#xff0c;终于是弄明白了Grid布局方法的规则。之前我是阅读的微软官方的开发教程&#xff0c;书中没有详细说明CSS3的布局规则&#xff0c;自己鼓捣了半天也是一头雾水&#xff0c;于是又找到了…

flsah的分类

1. flash按照内部存储结构不同&#xff0c;分为两种&#xff1a;nor flash和nand flash。 nor flash&#xff1a;像访问SDRAM一样&#xff0c;按照数据/地址总线直接访问, 可写的次数较少&#xff0c;速度也慢&#xff0c;由于其读时序类似于SRAM&#xff0c;读地址是线性结构&…

Oracle EXP/IMP参数详解

exp/imp是Oracle自带的导入导出命令&#xff0c;运用它&#xff0c;即使不需要那结UI工具也能轻易的完成数据导出导入工作&#xff0c;下面是它们的参数&#xff1a;EXP参数详解使用的格式是&#xff1a;EXP KEYWORDvalue 或 KEYWORD(value1,value2,...,valueN)其中USERID是必须…

java每日小算法(10)

/*【程序10】 题目&#xff1a;一球从100米高度自由落下&#xff0c;每次落地后反跳回原高度的一半&#xff1b;再落下&#xff0c;求它在 第10次落地时&#xff0c;共经过多少米&#xff1f;第10次反弹多高&#xff1f; */ package test;public class test {public static vo…

C语言串口驱动程序

驱动层屏蔽了硬件细节&#xff0c;个人猜测&#xff0c;几乎所有移植好的系统的串口&#xff0c;都可以用一样的代码来操作&#xff0c;至少2440和树莓派是通用的。 分享代码如下&#xff1a; [cpp] view plaincopy #include <sys/types.h> #include <sys/stat.h>…

Windows下的Qt Creator的安装

采用Qt和Qt creator分别下载和安装的方式&#xff1a;&#xff08;需要手动设置关联Qt和Qt Creator&#xff09; 一、软件下载 从http://qt-project.org/downloads分别下载Qt和Qt Creator&#xff1a; Qt使用4.7.2版本&#xff1a;qt-win-opensource-4.7.2-mingw.exe Qt Creato…

进程 、进程组、会话、控制终端之间的关系

一个进程组可以包含多个进程 进程组中的这些进程之间不是孤立的&#xff0c;他们彼此之间或者存在者父子、兄弟关系&#xff0c;或者在功能有相近的联系。 那linux为什么要有进程组呢&#xff1f;其实提供进程组就是方便管理这些进程。假设要完成一个任务&#xff0c;需要同时并…

matlab保存数据

一&#xff1a;存txt文件&#xff0c;用dlmwrite()dlmwrite 将一个矩阵写到由分隔符分割的文件中。 在保存整数到文件时使用save存为ascii文件时&#xff0c;常常是文件里都是实型格式的数据&#xff08;有小数点&#xff0c;和后面很多的0&#xff0c;看着很不方便&#xff09…

linux下串口的阻塞和非阻塞操作

有两个可以进行控制串口阻塞性&#xff08;同时控制read和write&#xff09;&#xff1a;一个是在打开串口的时候&#xff0c;open函数是否带O_NDELAY&#xff1b;第二个是可以在打开串口之后通过fcntl()函数进行控制。 阻塞的定义&#xff1a; 对于read&#xff0c;block指当串…

串口初始化配置

在基于AT91的嵌入式linux中接收串口数据时&#xff0c;发现对于接收的数据经常出现接收不完整的现象。一帧的数据可能会被当做两帧接收&#xff0c;导致对于一帧数据接收出现问题。虽然这种情况在一般情况下&#xff0c;并不是经常出现&#xff0c;但是只要数据量稍微大一些&am…

Angularjs 通过asp.net web api认证登录

Angularjs 通过asp.net web api认证登录 Angularjs利用asp.net mvc提供的asp.net identity&#xff0c;membership实现居于数据库的用户名/密码的认证登录 环境 Vs.net 2013 Asp.net mvc web api Individual user accounts Angularjs Underscore 新建一个asp.net mvc web api …

PANIC: Unreachable code reached.

为什么80%的码农都做不了架构师&#xff1f;>>> Caused by: java.lang.RuntimeException: PANIC: Unreachable code reached.at cryptix.jce.provider.cipher.BlockCipher.engineGetParameters(BlockCipher.java:244)at javax.crypto.Cipher.checkCryptoPerm(Ciphe…

Linux VTIME VMIN的作用以及使用有效的前提

前提条件 1、fdcom open(ptty, O_RDWR | O_NOCTTY); //other attributions default /*Canonical Input*/ //termios_new.c_lflag | (ICANON | ECHO | ECHOE); 2、/*Raw Input*/ //termios_new.c_lflag & ~(ICANON | ECHO | ECHOE | ISIG); 下面解释&#xff1a; op…

php中使用httpclient

下载HttpClient.phphttp://yunpan.cn/QiD93DMb6vsEH &#xff08;提取码&#xff1a;ec47&#xff09; 下载之后&#xff0c;将该文件放到项目文件目录下新建class目录下 然后在php中使用: 1 <?php2 require_once class/HttpClient.php;3 $params array(4 coords>114.3…

Hi3520d uboot uImage rootfs 移植与升级

安装、升级hi3520DDEMO板开发开发环境 # 如果您使用的hi3520D的DEMO板&#xff0c;可以按照以下步骤烧写u-boot&#xff0c;内核以及文件系统&#xff0c;以下步骤均使用网络来更新。 # 通常&#xff0c;您拿到的单板中已经有u-boot&#xff0c;如果没有的话&#xff0…

面向切面编程(转)

面向切面编程&#xff08;AOP是Aspect Oriented Program的首字母缩写&#xff09; &#xff0c;我们知道&#xff0c;面向对象的特点是继承、多态和封装。而封装就要求将功能分散到不同的对象中去&#xff0c;这在软件设计中往往称为职责分配。实际上也就是说&#xff0c;让不同…

Hi3520d uImage制作 uboot制作 rootfs制作

首次安装SDK 1、hi3520D SDK包位置 在"hi3520D_V100R001***/01.software/board"目录下&#xff0c;您可以看到一个 hi3520D_SDK_Vx.x.x.x.tgz 的文件&#xff0c; 该文件就是hi3520D的软件开发包。 2、解压缩SDK包 在linux服务器上&#xff08;或者一台装有…

[LeetCode Online Judge]系列-求二维平面内在一条直线上的最大点数

2019独角兽企业重金招聘Python工程师标准>>> Max Points on a Line Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. 题目是:在2D平面内给N个点,求最多多少个点在一个直线上. 以下是AC的解决方式: /*** Defi…

Hi3520D UART2和UART3是如何加载到内核的

Hi3520D的UART驱动位于linux-3.0.y/drivers/tty/serial/amba-pl011.c 添加UART2和UART3需要修改的文件为&#xff1a;linux-3.0.y/arch/arm/mach-hi3520d/core.c和linux-3.0.y/arch/arm/mach-hi3520d/include/mach/irqs.h两个文件&#xff1b; 首先修改 core.c文件&#xff0c;…

Linux-C实现GPRS模块发送短信

“GSM模块&#xff0c;是将GSM射频芯片、基带处理芯片、存储器、功放器件等集成在一块线路板上&#xff0c;具有独立的操作系统、GSM射频处理、基带处理并提供标准接口的功能模块。GSM模块根据其提供的数据传输速率又可以分为GPRS模块、EDGE模块和纯短信模块。短信模块只支持语…