genism word2vec方法

文章目录

  • 概述
  • 使用示例
  • 模型的保存与使用
  • 训练参数详解([原链接](https://blog.csdn.net/weixin_44852067/article/details/130221655))
  • 语料库训练

概述

word2vec是按句子来处理的Sentences(句子们)

使用示例

from gensim.models import Word2Vec
#sentences 是二维的向量,这个就是要用的语料库(庞大的语料库文件在第四节说明使用方法)
sentences = [["cat", "say", "meow"], ["dog", "say", "woof"]]#进行模型训练
model = Word2Vec(sentences,vector_size = 20, window = 2 , min_count = 1, epochs=7, negative=10,sg=1)
print("cat的词向量:\n",model.wv.get_vector('cat'))
print("\n和“cat”相关性最高的前20个词语:")
print(model.wv.most_similar('cat', topn = 5))# 与孔明最相关的前20个词语

模型的保存与使用

在上一步使用示例之后,对模型进行保存和使用:

# 模型的保存与加载
model.save("word2vec.model")
#这种情况存储下来可以继续训练
model = Word2Vec.load("word2vec.model")
#只存储词向量,是key:vector的形式,无法继续训练.binary表示是否是二进制文件
model.wv.save_word2vec_format("dic_model.model",binary = False)
# 如果需要添加新的语料,则需要进行更新词库==>model.build_vocab(LineSentence(sentence_file(新的语料)),update=True)
# 但是注意,如果新增的词的数量少于训练时的min_count,就查不到对应的向量
model.build_vocab([["hello", "world"]],update=True)
# 模型继续增加语料进行训练,total_examples:句子数;epochs:迭代次数
model.train([["hello", "world"]], total_examples=1, epochs=1)
print("cat的词向量:\n",model.wv.get_vector('cat'))

训练参数详解(原链接)

 classgensim.models.word2vec.Word2Vec(sentences=None, corpus_file=None, vector_size=100, alpha=0.025, window=5, min_count=5, max_vocab_size=None, sample=0.001, seed=1, workers=3, min_alpha=0.0001, sg=0, hs=0, negative=5, ns_exponent=0.75, cbow_mean=1, hashfxn=<built-in function hash>, epochs=5, null_word=0, trim_rule=None, sorted_vocab=1, batch_words=10000, compute_loss=False, callbacks=(), comment=None, max_final_vocab=None, shrink_windows=True)
  • sentences 可以是一个list,对于大语料集,建议使用BrownCorpus,Text8Corpus或lineSentence构建。
  • vector_size word向量的维度,默认为100。大的size需要更多的训练数据,但是效果会更好。推荐值为几十到几百。
  • alpha 学习率
  • window 表示当前词与预测词在一个句子中的最大距离是多少。
  • min_count 可以对字典做截断。词频少于min_count次数的单词会被丢弃掉,默认值为5。
  • max_vocab_size 设置词向量构建期间的RAM限制。如果所有独立单词个数超过这个,则就消除掉其中最不频繁的一个。每一千万个单词需要大约1GB的RAM。设置成None则没有限制。
  • sample 高频词汇的随机降采样的配置阈值,默认为1e-3,范围是(0,1e-5) seed 用于随机数发生器。与初始化词向量有关。
  • workers 参数控制训练的并行数。 sg 用于设置训练算法,默认为0,对应CBOW算法;sg=1则采用skip-gram算法。
  • hs 如果为1则会采用hierarchica·softmax技巧。如果设置为0(default),则negative
  • sampling会被使用。 negative 如果>0,则会采用negative samping,用于设置多少个noise words。
  • cbow_mean 如果为0,则采用上下文词向量的和,如果为1(default)则采用均值。只有使用CBOW的时候才起作用。
  • hashfxn hash函数来初始化权重。默认使用python的hash函数。 epochs 迭代次数,默认为5。
  • trim_rule 用于设置词汇表的整理规则,指定那些单词要留下,哪些要被删除。可以设置为None(min_count会被使用)或者一个接受()并返回RULE_DISCARD,utils。RULE_KEEP或者utils。RULE_DEFAULT的函数。
  • sorted_vocab 如果为1(default),则在分配word index 的时候会先对单词基于频率降序排序。
  • batch_words 每一批的传递给线程的单词的数量,默认为10000
  • min_alpha 随着训练的进行,学习率线性下降到min_alpha

语料库训练

  • 使用自建语料库进行训练时,代码示例如下:
model = Word2Vec(LineSentence(open('corpus.txt', 'r',encoding = 'utf8')),vector_size = 20, window = 2 , min_count = 2, epochs=7, negative=10,sg=1)

其中,corput.txt是自己制作的预料库,LinSentence 函数在使用之前需要对待处理的文本数据进行分词(使用jieba库,使用可参考链接),并以空格分隔;函数在运行时,按行读取已经以空格分隔的文档。文档格式如图:

在这里插入图片描述

  • 使用已有语料库可以是:BrownCorpusTest8Corpus

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/40034.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《起风了》C++源代码

使用方法 Visual Studio、Dev-C、Visual Studio Code等C/C创建一个 .cpp 文件&#xff0c;直接粘贴赋值即可。 #include <iostream> #include <Windows.h> #pragma comment(lib,"winmm.lib") using namespace std; enum Scale {Rest 0, C8 108, B7 …

线性代数(四) 特征值相似矩阵

前言 前面主要讲述的是方程组和矩阵的关系&#xff0c;现在了解下矩阵和矩阵的关系 方阵的特征值与特征向量 假设A为n阶方阵&#xff0c;对于一个数 λ \lambda λ 若存在&#xff1a;非零列向量 α \alpha α&#xff0c;使得&#xff1a; A α ⃗ λ α ⃗ A\vec{\alp…

2022年电赛C题——小车跟随行驶系统——做题记录以及经验分享

前言 自己打算将做过的电赛真题&#xff0c;主要包含控制组的&#xff0c;近几年出现的小车控制题目&#xff0c;自己做过的真题以及在准备电赛期间刷真题出现的问题以及经验分享给大家 这次带来的是22年电赛C题——小车跟随行驶系统&#xff0c;这道题目指定使用的是TI的单片…

spring ico容器 spring注入方式 spring与tomcat整合

一、简介 1、什么是spring&#xff1f; Spring是一个开源的轻量级Java应用开发框架&#xff0c;它提供了一种简单、高效、灵活的方式来构建企业级应用程序。Spring框架的核心特点是依赖注入&#xff08;Dependency Injection&#xff09;和面向切面编程&#xff08;Aspect-Ori…

SpringBoot整合Redis完整篇

SpringBoot整合Redis完整篇 1、在springboot项目的pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schem…

分布式锁有哪些应用场景和实现?

电商网站都会遇到秒杀、特价之类的活动&#xff0c;大促活动有一个共同特点就是访问量激增&#xff0c;在高并发下会出现成千上万人抢购一个商品的场景。虽然在系统设计时会通过限流、异步、排队等方式优化&#xff0c;但整体的并发还是平时的数倍以上&#xff0c;参加活动的商…

WebRTC音视频通话-实现GPUImage视频美颜滤镜效果iOS

WebRTC音视频通话-实现GPUImage视频美颜滤镜效果 在WebRTC音视频通话的GPUImage美颜效果图如下 可以看下 之前搭建ossrs服务&#xff0c;可以查看&#xff1a;https://blog.csdn.net/gloryFlow/article/details/132257196 之前实现iOS端调用ossrs音视频通话&#xff0c;可以查…

将单个训练数据集文件拆分为:image文件和label文件(pytorch学习+蚂蚁蜜蜂数据集)

蚂蚁蜜蜂分类数据集下载链接&#xff1a;https://download.pytorch.org/tutorial/hymenoptera_data.zip 要实现如图操作&#xff1a; 将ants分为ants_image和ants_label 将bees分成bees_image和bees_label 创建ants_label和bees_label&#xff0c;并且以图片名作为txt文件的…

【机器学习】sklearn数据集的使用,数据集的获取和划分

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 sklearn数据集 二、安装sklearn二、获取数据集三、…

mac录屏工具,录屏没有声音的解决办法

mac录屏工具&#xff0c;录屏没有声音的解决办法 在使用macbook录制屏幕时&#xff0c;发现自带的录屏工具QuickTime Player没有声音&#xff0c;于是尝试了多款录屏工具&#xff0c;对其做一些经验总结&#xff08;省流&#xff1a;APP Store直接可以免费下载使用Omi录屏专家…

第三课-界面介绍SD-Stable Diffusion 教程

前言 我们已经安装好了SD&#xff0c;这篇文章不介绍难以理解的原理&#xff0c;说使用。以后再介绍原理。 我的想法是&#xff0c;先学会画&#xff0c;然后明白原理&#xff0c;再去提高技术。 我失败过&#xff0c;知道三天打鱼两天晒网的痛苦&#xff0c;和很多人一样试了…

TiDB数据库从入门到精通系列之六:使用 TiCDC 将 TiDB 的数据同步到 Apache Kafka

TiDB数据库从入门到精通系列之六&#xff1a;使用 TiCDC 将 TiDB 的数据同步到 Apache Kafka 一、技术流程二、搭建环境三、创建Kafka changefeed四、写入数据以产生变更日志五、配置 Flink 消费 Kafka 数据 一、技术流程 快速搭建 TiCDC 集群、Kafka 集群和 Flink 集群创建 c…

【网络编程系列】网络编程实战

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…

jvm内存溢出排查(使用idea自带的内存泄漏分析工具)

文章目录 1.确保生成内存溢出文件2.使用idea自带的内存泄漏分析工具3.具体实验一下 1.确保生成内存溢出文件 想分析堆内存溢出&#xff0c;一定在运行jar包时就写上参数-XX:HeapDumpOnOutOfMemoryError&#xff0c;可以看我之前关于如何运行jar包的文章。若你没有写。可以写上…

Python学习笔记_基础篇(九)_面向对象编程

本篇内容: 1、反射2、面向对象编程3、面向对象三大特性4、类成员5、类成员修饰符6、类的特殊成员7、单例模式 反射 python中的反射功能是由以下四个内置函数提供&#xff1a;hasattr、getattr、setattr、delattr&#xff0c;改四个函数分别用于对对象内部执行&#xff1a;检…

解决 adb install 错误INSTALL_FAILED_UPDATE_INCOMPATIBLE

最近给游戏出包&#xff0c;平台要求 v1 签名吧&#xff0c;AS 打包后&#xff0c;adb 执行安装到手机&#xff0c;我用的设备是google pixel6 , android 系统 13&#xff0c; 提示如下&#xff1a; adb install -r v5_android_202308161046.apk Performing Streamed Install a…

单片机第一季:零基础13——AD和DA转换

1&#xff0c;AD转换基本概念 51 单片机系统内部运算时用的全部是数字量&#xff0c;即0 和1&#xff0c;因此对单片机系统而言&#xff0c;无法直接操作模拟量&#xff0c;必须将模拟量转换成数字量。所谓数字量&#xff0c;就是用一系列0 和1 组成的二进制代码表示某个信号大…

Linux -- 进阶 Autofs自动挂载服务 实验详解

服务端创建共享目录&#xff0c; 客户端实现自动挂载 第一步 &#xff1a; 客户端&#xff0c;服务端 均关闭安全软件 [rootserver ~]# setenforce 0 [rootserver ~]# systemctl stop firewalld [rootnode1 ~]# setenforce 0 [rootnode1 ~]# systemctl stop firewalld 第二…

MyBaits(单独使用,与整合无关)小白版

文章目录 概述比较配置写xml加载上面配置并执行加载配置的方法方式一 执行方法方式一方式二(MyBatis映射器) 写配置文件的映射文件设置对象的别名&#xff08;简写&#xff09;获取自动生成的主键 查询结果和java的映射规则基本类型映射&#xff1a;简单对象映射&#xff1a;嵌…

加盐加密算法

MD5加密加盐加密项目密码升级 MD5加密 MD5一系列公式进行复杂数学运算&#xff1b;特点&#xff1a;&#xff08;用途校验和、计算hash值方式、加密&#xff09; 1&#xff1a;定长&#xff1b;无论原始数据多长&#xff1b;算出的结果都是4或者8字节的版本。 2&#xff1a;冲…