2023国赛数学建模思路 - 复盘:校园消费行为分析

文章目录

  • 0 赛题思路
  • 1 赛题背景
  • 2 分析目标
  • 3 数据说明
  • 4 数据预处理
  • 5 数据分析
    • 5.1 食堂就餐行为分析
    • 5.2 学生消费行为分析
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 赛题背景

校园一卡通是集身份认证、金融消费、数据共享等多项功能于一体的信息集成系统。在为师生提供优质、高效信息化服务的同时,系统自身也积累了大量的历史记录,其中蕴含着学生的消费行为以及学校食堂等各部门的运行状况等信息。

很多高校基于校园一卡通系统进行“智慧校园”的相关建设,例如《扬子晚报》2016年 1月 27日的报道:《南理工给贫困生“暖心饭卡补助”》。

不用申请,不用审核,饭卡上竟然能悄悄多出几百元……记者昨天从南京理工大学独家了解到,南理工教育基金会正式启动了“暖心饭卡”

项目,针对特困生的温饱问题进行“精准援助”。

项目专门针对贫困本科生的“温饱问题”进行援助。在学校一卡通中心,教育基金会的工作人员找来了全校一万六千余名在校本科生 9 月中旬到 11月中旬的刷卡记录,对所有的记录进行了大数据分析。最终圈定了 500余名“准援助对象”。

南理工教育基金会将拿出“种子基金”100万元作为启动资金,根据每位贫困学生的不同情况确定具体的补助金额,然后将这些钱“悄无声息”的打入学生的饭卡中,保证困难学生能够吃饱饭。

——《扬子晚报》2016年 1月 27日:南理工给贫困生“暖心饭卡补助”本赛题提供国内某高校校园一卡通系统一个月的运行数据,希望参赛者使用

数据分析和建模的方法,挖掘数据中所蕴含的信息,分析学生在校园内的学习生活行为,为改进学校服务并为相关部门的决策提供信息支持。

2 分析目标

  • 1. 分析学生的消费行为和食堂的运营状况,为食堂运营提供建议。

  • 2. 构建学生消费细分模型,为学校判定学生的经济状况提供参考意见。

3 数据说明

附件是某学校 2019年 4月 1 日至 4月 30日的一卡通数据

一共3个文件:data1.csv、data2.csv、data3.csv
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 数据预处理

将附件中的 data1.csv、data2.csv、data3.csv三份文件加载到分析环境,对照附录一,理解字段含义。探查数据质量并进行缺失值和异常值等方面的必要处理。将处理结果保存为“task1_1_X.csv”(如果包含多张数据表,X可从 1 开始往后编号),并在报告中描述处理过程。

import numpy as np
import pandas as pd
import os
os.chdir('/home/kesci/input/2019B1631')
data1 = pd.read_csv("data1.csv", encoding="gbk")
data2 = pd.read_csv("data2.csv", encoding="gbk")
data3 = pd.read_csv("data3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

data1.columns = ['序号', '校园卡号', '性别', '专业名称', '门禁卡号']
data1.dtypes

在这里插入图片描述

data1.to_csv('/home/kesci/work/output/2019B/task1_1_1.csv', index=False, encoding='gbk')
data2.head(3)

在这里插入图片描述
将 data1.csv中的学生个人信息与 data2.csv中的消费记录建立关联,处理结果保存为“task1_2_1.csv”;将 data1.csv 中的学生个人信息与data3.csv 中的门禁进出记录建立关联,处理结果保存为“task1_2_2.csv”。

data1 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_1.csv", encoding="gbk")
data2 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_2.csv", encoding="gbk")
data3 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

5 数据分析

5.1 食堂就餐行为分析

绘制各食堂就餐人次的占比饼图,分析学生早中晚餐的就餐地点是否有显著差别,并在报告中进行描述。(提示:时间间隔非常接近的多次刷卡记录可能为一次就餐行为)

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

import matplotlib as mpl
import matplotlib.pyplot as plt
# notebook嵌入图片
%matplotlib inline
# 提高分辨率
%config InlineBackend.figure_format='retina'
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/home/kesci/work/SimHei.ttf")
import warnings
warnings.filterwarnings('ignore')
canteen1 = data['消费地点'].apply(str).str.contains('第一食堂').sum()
canteen2 = data['消费地点'].apply(str).str.contains('第二食堂').sum()
canteen3 = data['消费地点'].apply(str).str.contains('第三食堂').sum()
canteen4 = data['消费地点'].apply(str).str.contains('第四食堂').sum()
canteen5 = data['消费地点'].apply(str).str.contains('第五食堂').sum()
# 绘制饼图
canteen_name = ['食堂1', '食堂2', '食堂3', '食堂4', '食堂5']
man_count = [canteen1,canteen2,canteen3,canteen4,canteen5]
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("食堂就餐人次占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述
通过食堂刷卡记录,分别绘制工作日和非工作日食堂就餐时间曲线图,分析食堂早中晚餐的就餐峰值,并在报告中进行描述。

在这里插入图片描述

# 对data中消费时间数据进行时间格式转换,转换后可作运算,coerce将无效解析设置为NaT
data.loc[:,'消费时间'] = pd.to_datetime(data.loc[:,'消费时间'],format='%Y-%m-%d %H:%M',errors='coerce')
data.dtypes
# 创建一个消费星期列,根据消费时间计算出消费时间是星期几,Monday=1, Sunday=7
data['消费星期'] = data['消费时间'].dt.dayofweek + 1
data.head(3)
# 以周一至周五作为工作日,周六日作为非工作日,拆分为两组数据
work_day_query = data.loc[:,'消费星期'] <= 5
unwork_day_query = data.loc[:,'消费星期'] > 5work_day_data = data.loc[work_day_query,:]
unwork_day_data = data.loc[unwork_day_query,:]
# 计算工作日消费时间对应的各时间的消费次数
work_day_times = []
for i in range(24):work_day_times.append(work_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())# 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24):x.append('{:02d}:00'.format(i))
# 绘图
plt.plot(x, work_day_times, label='工作日')
# x,y轴标签
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
# 标题
plt.title('工作日消费曲线图', fontproperties=font)
# x轴倾斜60度
plt.xticks(rotation=60)
# 显示label
plt.legend(prop=font)
# 加网格
plt.grid()

在这里插入图片描述

# 计算飞工作日消费时间对应的各时间的消费次数
unwork_day_times = []
for i in range(24):unwork_day_times.append(unwork_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())# 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24): x.append('{:02d}:00'.format(i))
plt.plot(x, unwork_day_times, label='非工作日')
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
plt.title('非工作日消费曲线图', fontproperties=font)
plt.xticks(rotation=60)
plt.legend(prop=font)
plt.grid()

在这里插入图片描述
根据上述分析的结果,很容易为食堂的运营提供建议,比如错开高峰等等。

5.2 学生消费行为分析

根据学生的整体校园消费数据,计算本月人均刷卡频次和人均消费额,并选择 3个专业,分析不同专业间不同性别学生群体的消费特点。

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

# 计算人均刷卡频次(总刷卡次数/学生总人数)
cost_count = data['消费时间'].count()
student_count = data['校园卡号'].value_counts(dropna=False).count()
average_cost_count = int(round(cost_count / student_count))
average_cost_count# 计算人均消费额(总消费金额/学生总人数)
cost_sum = data['消费金额'].sum()
average_cost_money = int(round(cost_sum / student_count))
average_cost_money# 选择消费次数最多的3个专业进行分析
data['专业名称'].value_counts(dropna=False)

在这里插入图片描述

# 消费次数最多的3个专业为 连锁经营、机械制造、会计
major1 = data['专业名称'].apply(str).str.contains('18连锁经营')
major2 = data['专业名称'].apply(str).str.contains('18机械制造')
major3 = data['专业名称'].apply(str).str.contains('18会计')
major4 = data['专业名称'].apply(str).str.contains('18机械制造(学徒)')data_new = data[(major1 | major2 | major3) ^ major4]
data_new['专业名称'].value_counts(dropna=False)分析 每个专业,不同性别 的学生消费特点
data_male = data_new[data_new['性别'] == '男']
data_female = data_new[data_new['性别'] == '女']
data_female.head()

在这里插入图片描述
根据学生的整体校园消费行为,选择合适的特征,构建聚类模型,分析每一类学生群体的消费特点。

data['专业名称'].value_counts(dropna=False).count()
# 选择特征:性别、总消费金额、总消费次数
data_1 = data[['校园卡号','性别']].drop_duplicates().reset_index(drop=True)
data_1['性别'] = data_1['性别'].astype(str).replace(({'男': 1, '女': 0}))
data_1.set_index(['校园卡号'], inplace=True)
data_2 = data.groupby('校园卡号').sum()[['消费金额']]
data_2.columns = ['总消费金额']
data_3 = data.groupby('校园卡号').count()[['消费时间']]
data_3.columns = ['总消费次数']
data_123 =  pd.concat([data_1, data_2, data_3], axis=1)#.reset_index(drop=True)
data_123.head()# 构建聚类模型
from sklearn.cluster import KMeans
# k为聚类类别,iteration为聚类最大循环次数,data_zs为标准化后的数据
k = 3    # 分成几类可以在此处调整
iteration = 500
data_zs = 1.0 * (data_123 - data_123.mean()) / data_123.std()
# n_jobs为并发数
model = KMeans(n_clusters=k, n_jobs=4, max_iter=iteration, random_state=1234)
model.fit(data_zs)
# r1统计各个类别的数目,r2找出聚类中心
r1 = pd.Series(model.labels_).value_counts()
r2 = pd.DataFrame(model.cluster_centers_)
r = pd.concat([r2,r1], axis=1)
r.columns = list(data_123.columns) + ['类别数目']# 选出消费总额最低的500名学生的消费信息
data_500 = data.groupby('校园卡号').sum()[['消费金额']]
data_500.sort_values(by=['消费金额'],ascending=True,inplace=True,na_position='first')
data_500 = data_500.head(500)
data_500_index = data_500.index.values
data_500 = data[data['校园卡号'].isin(data_500_index)]
data_500.head(10)

在这里插入图片描述

# 绘制饼图
canteen_name = list(data_max_place.index)
man_count = list(data_max_place.values)
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("低消费学生常消费地点占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/39859.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

个保新标 | 《信息安全技术 敏感个人信息处理安全要求》(征求意见稿)发布

8 月 9 日&#xff0c;全国信息安全标准化技术委员会公开发布关于国家标准《信息安全技术 敏感个人信息处理安全要求》&#xff08;征求意见稿&#xff09;&#xff08;以下简称《标准》&#xff09;的通知&#xff0c;面向社会广泛征求意见。 《标准》的制定背景是为支撑《个人…

《Go 语言第一课》课程学习笔记(一)

配好环境&#xff1a;选择一种最适合你的 Go 安装方法 选择 Go 版本 一般情况下&#xff0c;建议采用最新版本。因为 Go 团队发布的 Go 语言稳定版本的平均质量一直是很高的&#xff0c;少有影响使用的重大 bug。可以根据不同实际项目需要或开源社区的情况使用不同的版本。 有…

攻击LNMP架构Web应用

环境配置(centos7) 1.php56 php56-fpm //配置epel yum install epel-release rpm -ivh http://rpms.famillecollet.com/enterprise/remi-release-7.rpm//安装php56&#xff0c;php56-fpm及其依赖 yum --enablereporemi install php56-php yum --enablereporemi install php…

常见的字符编码有哪些?有什么区别?

目录 面试回答 知识扩展 Unicode 和 UTF-8 有啥关系&#xff1f; 有了 UTF-8&#xff0c;为什么要出现 GBK 为什么会出现乱码 面试回答 就像电报只能发出“滴”和“答”声一样&#xff0c;计算机只认为 0 和1 两种字符&#xff0c;但是&#xff0c;人类的文字是多种多样的&…

B树和B+树区别

B树和B树的区别 B树 B树被称为平衡树&#xff0c;在B树中&#xff0c;一个节点可以有两个以上的子节点。B树的高度为log M N。在B树中&#xff0c;数据按照特定的顺序排序&#xff0c;最小值在左侧&#xff0c;最大值在右侧。 B树是一种平衡的多分树&#xff0c;通常我们说m阶…

什么是网络地址转换 (NAT)

网络地址转换&#xff08;NAT&#xff09;是更改源和目标 IP 地址和端口的过程&#xff0c;地址转换减少了对 IPv4 公共地址的需求&#xff0c;并隐藏了专用网络地址范围&#xff0c;该过程通常由路由器或防火墙完成。 NAT是如何工作的 NAT 允许单个设备&#xff08;如路由器…

rhel 8.7 部署 keepalived+haproxy 实现 mysql 双主高可用场景

文章目录 [toc]部署 mysql关闭防火墙关闭 selinux创建相关目录创建 mysql 用户配置 PATH 变量验证 mysql 命令切换到 mysql 用户在 172.72.0.116 生成配置文件在 172.72.0.137 生成配置文件mysql 初始化启动 mysql 服务修改 mysql 的 root 用户密码配置主从关系172.72.0.137 配…

数字化格局下的引领者:百望云通过强制性国家标准GB18030-2022最高级别认证

8月1日,强制性国家标准GB 18030-2022《信息技术 中文编码字符集》实施。8月15日,百望云“绿页阅读器”正式通过中国电子技术标准化研究院强制性国家标准GB18030-2022《信息技术 中文编码字符集》最高级(实现级别3)认证,彰显了百望云在数字化信息处理领域对标国家标准的卓越技术…

Android CameraX适配Android13的踩坑之路

AndroidCameraX适配Android13的踩坑之路 前言&#xff1a; 最近把AGP插件升级到8.1.0&#xff0c;新建项目的时候目标版本和编译版本都是33&#xff0c;发现之前的demo使用Camerax拍照和录像都失败了&#xff0c;于是查看了一下官网和各种资料&#xff0c;找到了Android13的适…

网络编程(12): TCP重传、滑动窗口、流量控制、拥塞控制

1、TCP重传机制 通过序列号和确认号确保可靠传输&#xff0c;当发送端发送数据给接收到&#xff0c;接收端会返回一个确认号&#xff0c;表示收到消息了 超时重传&#xff1a;没有在指定时间内收到ACK报文 超时重传的两种可能&#xff1a;数据包丢失、确认包丢失超时重传时间RT…

第十三课:QtCmd 命令行终端应用程序开发

功能描述&#xff1a;开发一个类似于 Windows 命令行提示符或 Linux 命令行终端的应用程序 一、最终演示效果 QtCmd 不是因为它是 Qt 的组件&#xff0c;而是采用 Qt 开发了一个类似 Windows 命令提示符或者 Linux 命令行终端的应用程序&#xff0c;故取名为 QtCmd。 上述演示…

FreeMarker系列--list的用法(长度,遍历,下标,嵌套,排序)

原文网址&#xff1a;FreeMarker系列--list的用法&#xff08;长度,遍历,下标,嵌套,排序&#xff09;_IT利刃出鞘的博客-CSDN博客 简介 本文介绍FreeMarker的list的用法。 大小 Java ArrayList<String> list new ArrayList<String>(); Freemaker ${list?s…

W5500-EVB-PICO 做UDP Server进行数据回环测试(七)

前言 前面我们用W5500-EVB-PICO 开发板在TCP Client和TCP Server模式下&#xff0c;分别进行数据回环测试&#xff0c;本章我们将用开发板在UDP Server模式下进行数据回环测试。 UDP是什么&#xff1f;什么是UDP Server&#xff1f;能干什么&#xff1f; UDP (User Dataqram P…

图数据库_Neo4j学习cypher语言_使用CQL命令002_删除节点_删除属性_结果排序Order By---Neo4j图数据库工作笔记0006

然后我们再来看如何删除节点 可以看到首先 我们这里 比如我要删除张三 可以看到 match (n:student) where n.name = "张三" delete n 这样就是删除了student集合中,name是张三的节点 然后我们再来看 如何来删除关系 match (n:student)-[r]->(m:student) where…

机器学习、cv、nlp的一些前置知识

为节省篇幅&#xff0c;不标注文章来源和文章的问题场景。大部分是我的通俗理解。 文章目录 向量关于向量的偏导数&#xff1a;雅可比矩阵二阶导数矩阵&#xff1a;海森矩阵随机变量随机场伽马函数beta分布数学术语坐标上升法协方差训练集&#xff0c;验证集&#xff0c;测试集…

Nginx的安装及负载均衡搭建

一.Nginx的安装 1&#xff09;准备安装环境 yum install -y make gcc gcc-c pcre-devel pcre zlib zlib-devel openssl openssl-develPERE PCRE(Perl Compatible Regular Expressions)是一个Perl库&#xff0c;包括 perl 兼容的正则表达式库。 nginx的http模块使用pcre来解…

前端jd要求:了解一门后端开发语言优先 解决方案之Node.js

前端jd要求&#xff1a;了解一门后端开发语言优先 解决方案之Node.js 前言常见的后端开发语言一、什么是 Node.js二、学习 Node.js 的前置知识三、学习 Node.js 的步骤1、Node.js 的安装2、Node.js 的基本语法和 API模块导入和导出文件读写操作HTTP 服务器命令行参数 3、Node.j…

可能导致不可接受的信息安全事件发生的核电站事故。

立陶宛伊格纳利纳核电站&#xff08;1992 年&#xff09; 一名在该核电站工作的程序员将恶意代码上传到一个负责反应堆子系统运行的自动化系统中&#xff0c;该系统被及时发现。 但如果没有及时发现&#xff0c;谁知道会发生什么呢&#xff1f;核电站被关闭以进行调查。有关这…

Vue-8.集成(.editorconfig、.eslintrc.js、.prettierrc)

介绍 同时使用 .editorconfig、.prettierrc 和 .eslintrc.js 是很常见的做法&#xff0c;因为它们可以在不同层面上帮助确保代码的格式一致性和质量。这种组合可以在开发过程中提供全面的代码维护和质量保证。然而&#xff0c;这也可能增加一些复杂性&#xff0c;需要谨慎配置…

Coreutils工具包,Windows下使用Linux命令

之前总结过两篇有关【如何在Windows系统下使用Linux的常用命令】的文章&#xff1a; GnuWin32&#xff0c;Windows下使用Linux命令 UnxUtils工具包&#xff0c;Windows下使用Linux命令 今天再推荐一个类似的工具包Coreutils 一、简介 GNU core utilities是GNU操作系统基本…