图像去雨、去雪、去雾论文学习记录

All_in_One_Bad_Weather_Removal_Using_Architectural_Search

这篇论文发表于CVPR2020,提出一种可以应对多种恶劣天气的去噪模型,可以同时进行去雨、去雪、去雾操作。但该部分代码似乎没有开源。
提出的问题:
当下的模型只能针对一种恶劣天气进行处理,无法适用于多种复杂恶劣天气
目前的去噪数据集都是人为制作的,与真实数据具有差异。
在这里插入图片描述

创新点1:多合一去噪模型

该方法整体结构如下图所示,其基于对抗神经网络模型进行设计,包含一个生成器(Generator)与一个判别器(Discriminator)。于以往只能处理一种恶劣天气噪声不同,本文提出一种多合一去噪模型,可以同时完成去雨、去雪、去雾操作。

在这里插入图片描述
在生成器中,主要包含三个特征提取模块(雨雪雾 FE,Feature Exactor),一个特征选择模块(Feature Search)以及一个解码器模块(Decoder),判别器则进行判断生成的图像是否为真,并将结果返回到生成器,计算损失,并通过反向传播更新生成器中的参数。

生成器含有多个任务的编码器,每个编码器与特定的恶劣天气类型相关,通过神经架构搜索来优化从各个编码器中提取的图像特征,并将这些特征转换为干净的图像。即思路为:将含有雨雪雾的图像输入生成器,通过生成器中的编码器(FE)进行特征提取,将提取的特征通过神经架构搜索进行优化,选取好的特征信息,将提取的特征信息送入解码器生成干净图像,即完成去噪过程。

生成器模块

多个编码器,用于提取不同恶劣天气图像的干净特征,从而进行恢复,生成干净图像。
在这里插入图片描述

创新点2:Feature Search模块

神经架构查询实际是找到干净的特征,将干净的特征转换为干净的图像。

在这里插入图片描述

在这里插入图片描述
可以看到,FeatureSearch模块中除了常规的卷积操作外,还有残差连接,自注意力机制等。
常规的去雾、去霾模型定义如下:
在这里插入图片描述

也可以表示如下:通过1x1卷积来提取学习M,从而估计M,实现的操作如4.1所示。

在这里插入图片描述

创新点3:多类辅助判别器

基于生成对抗网络(GNN)的判别器通过训练来判断恢复图像效果(即判断生成的图像真实性),但其不提供错误信号,对于多合一模型而言,只知道真假是远远不够的,需要直到生成的图像类型,从而使编码器根据不同类型更新参数,因此提出多类辅助判别器,用于对图像进行分类,从而在反向传播判别损失时,只更新对应判别器的参数。

在这里插入图片描述

具体思路

雾霾图像建模

在这里插入图片描述

其中,I(x)为有雾图像,更具体的,I(x)是在位置x的雨图像,J(x)为观察目标反射光,即去雾后的图像,A为大气光系数,t(x)为大气透射率,t(x)= e^-βd(x),其中,d(x) 为场景深度图,β 为大气光散射系数。由公式(1)式可以清晰知道,只要求得 t(x) 和 A ,便可以从有雾图像 I(x) 恢复无雾图像 J(x) 。

而含雨图像与含雾图像的物理模型极为相似,故可以定义为:

在这里插入图片描述
其中,Ri代表第 i 层的雨线。

雨水图像建模

在这里插入图片描述
其中I(x)是彩色雨滴图像,M(x)是二值图像掩膜。J(x)是背景图像,即干净图像,K是图像所带来的附着的雨滴,代表着模糊的影像形成光线反射的环境。

雪花图像建模

在这里插入图片描述
其中S表示雪花,z是二元掩模,表示雪的位置。

根据上面的物理模型公式可知,不同恶劣天气噪声图像定义是不同的,这也是为何原本的模型都是一个模型处理一种恶劣天气噪声的原因,但根据公式我们也可以看到其内在联系,可以将恶劣天气噪声图像模型定义如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/39566.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JDBC连接数据库(mysql)

准备jar包 官网下载即可,这里提供两个我下载过的jar包,供使用 链接:https://pan.baidu.com/s/1snikBD1kEBaaJnVktLvMdQ?pwdrwwq 提取码:rwwq eclipse导 jar包: 导入成功会有如下所示: ---------------------------…

基于DEM tif影像的插值平滑和tif纹理贴图构建方法

文章目录 基于CDT的无缝融合基于拓扑纠正的地上-地表的Bool运算融合 基于CDT的无缝融合 准备数据是一个10米分辨率的Tif影像,直接用于生成DEM会十分的不平滑。如下图所示,平滑前后的对比效果图差异: 基于ArcGIS的DEM平滑插值 等值线生成&…

GPT内功心法:搜索思维到GPT思维的转换

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

Linux6.38 Kubernetes 集群存储

文章目录 计算机系统5G云计算第三章 LINUX Kubernetes 集群存储一、emptyDir存储卷2.hostPath存储卷3.nfs共享存储卷4.PVC 和 PV 计算机系统 5G云计算 第三章 LINUX Kubernetes 集群存储 容器磁盘上的文件的生命周期是短暂的,这就使得在容器中运行重要应用时会出…

C# WPF 无焦点自动获取USB 二维码扫码枪内容,包含中文

C# WPF 无焦点自动获取USB 二维码扫码枪内容,包含中文 前言项目背景 需要预知的知识实现方案第一步 安装键盘钩子第二步 获取输入的值第3 步 解决中文乱码问题分析解决思路工具函数 结束 前言 USB接口的扫码枪基本就相当于一个电脑外设,等同于一个快速输…

Unity引擎使用InteriorCubeMap采样制作假室内效果

Unity引擎制作假室内效果 大家好,我是阿赵。   这次来介绍一种使用CubeMap做假室内效果的方式。这种技术名叫InteriorCubeMap,是UE引擎自带的节点效果。我这里是在Unity引擎里面的实现。 一、效果展示 这个假室内效果,要动态看才能看出效…

Vue基础

Vue基础 Vue应用 <!DOCTYPE html> <html> <head><meta charset"utf-8"><title></title><!-- 开发环境版本 --><script src"https://cdn.jsdelivr.net/npm/vue/dist/vue.js"></script> </head&g…

vue所有UI库通用)tree-select 下拉多选(设置 maxTagPlaceholder 隐藏 tag 时显示的内容,支持鼠标悬浮展示更多

如果可以实现记得点赞分享&#xff0c;谢谢老铁&#xff5e; 1.需求描述 引用的下拉树形结构支持多选&#xff0c;限制选中tag的个数&#xff0c;且超过制定个数&#xff0c;鼠标悬浮展示更多已选中。 2.先看下效果图 3.实现思路 首先根据API文档&#xff0c;先设置maxTagC…

【Docker】Docker network之bridge、host、none、container以及自定义网络的详细讲解

&#x1f680;欢迎来到本文&#x1f680; &#x1f349;个人简介&#xff1a;陈童学哦&#xff0c;目前学习C/C、算法、Python、Java等方向&#xff0c;一个正在慢慢前行的普通人。 &#x1f3c0;系列专栏&#xff1a;陈童学的日记 &#x1f4a1;其他专栏&#xff1a;CSTL&…

STM32 CubeMX (uart_IAP串口)简单示例

STM32 CubeMX STM32 CubeMX &#xff08;串口IAP&#xff09; STM32 CubeMXIAP有什么用&#xff1f;整体思路 一、STM32 CubeMX 设置时钟树UART使能UART初始化设置 二、代码部分文件移植![在这里插入图片描述](https://img-blog.csdnimg.cn/0c4841d8328b4169a8833f15fe3d670c.p…

2023/8/16总结

这几天完成了私信的功能点&#xff0c;用websocket做的。 这是大概的界面&#xff0c;参考的是微信 用户可以搜索好友&#xff1a; 如果不存在是下面这样&#xff0c;存在就会在左边的聊天里面显示有这个人选项 发送消息 接下来需要把推荐算法给做了

文件IO编程 1 2

头文件包含路径 linux 操作系统分为两大空间&#xff1a;用户空间和内核空间 这样划分&#xff0c;是为了保护内核的核心组件&#xff0c;不被轻易访问和修改 系统调用&#xff1a;安全的访问内核空间 其核心是&#xff1a;函数API&#xff08;API&#xff1a;用户编程接口&…

K8S系列文章之 Docker安装使用Kafka

通过Docker拉取镜像的方式进行安装 照例先去DockerHub找一下镜像源&#xff0c;看下官方提供的基本操作&#xff08;大部分时候官方教程比网上的要清晰一些&#xff0c;并且大部分教程可能也是翻译的官方的操作步骤&#xff0c;所以直接看官方的就行&#xff09; 老实说Kafka…

【Vue3】Vue3 UI 框架 | Element Plus —— 创建并优化表单

安装 # NPM $ npm install element-plus --save // 或者&#xff08;下载慢切换国内镜像&#xff09; $ npm install element-plus -S// 可以选择性安装 less npm install less less-loader -D // 可以选择性配置 自动联想src目录Element Plus 的引入和注入 main.ts import…

总结 TCP 协议的相关特性

TCP协议段格式: 如图, 端口号: 是其中一个重要的部分,知道端口号才能确认数据交给哪个应用程序(端口号属于传输层的概念). 4位首部长度:4bit表示的范围是0->15,在此处,单位是"4字节",因此,将这里的数值 * 4&#xff0c;才是真正的报头长度,即TCP 报头最大长度,60…

Cenos7 搭建Minio最新版集群部署服务器(一)

------> 道 | 法 | 术 | 器 | 势 <------ 多台服务器间免密登录|免密拷贝 Cenos7 搭建Minio集群部署服务器(一) Cenos7 搭建Minio集群Nginx统一访问入口|反向动态代理(二) Spring Boot 与Minio整合实现文件上传与下载(三) CentOS7的journalctl日志查看方法 …

已知四个坐标点,怎样求出四边形的四个内角

1&#xff0c;理论 最简单的方式利用向量进行求解 如图可得&#xff1a; cosθa*b/&#xff08;|a|*|b|&#xff09; 已知三点坐标&#xff0c;很容易可以得到两向量之积a*b&#xff0c;以及每个的模值 2&#xff0c;四个角度求解过程 首先&#xff0c;我们定义了四个坐标点…

在数字游民天堂,Polkadot Hubs 探索建设更紧密的全球社区

分布式办公是 Web3 行业的协作常态&#xff0c;当数字游民们享受着线上远程工作的自由和便捷时&#xff0c;也在怀念着一种面对面与他人交流与共创的经历。共享空间随之兴起&#xff0c;为许多初创项目公司提供开放舒适的环境&#xff0c;却难以在不同的人群之间搭起一张巨大的…

完美解决Github提交PR后报错:File is not gofumpt-ed (gofumpt)

问题阐述 最近在Github上提交PR后&#xff0c;遇到了这么一个问题&#xff1a;golangci-lint运行失败&#xff0c;具体原因是File is not gofumpt-ed (gofumpt)。 名词解释 golangci-lint&#xff1a; golangci-lint 是Go语言社区中常用的代码质量检查工具&#xff0c;它可以…

[自学记录06|*百人计划]Gamma矫正与线性工作流

一、前言 Gamma矫正其实也属于我前面落下的一块内容&#xff0c;打算把它补上&#xff0c;其它的没补是因为我之前写的GAMES101笔记里已经涵盖了&#xff0c;而Gamma矫正在101里面确实没提到&#xff0c;于是打算把它补上&#xff0c;这块内容并不难&#xff0c;但是想通透的理…